Slimme camera zoekt gevaar op

De onderzoeksgroep van UvA-wetenschapper Dariu Gavrila werkt aan slimme camera's die opvallend menselijk gedrag in de openbare ruimte kunnen detecteren.

JOOST ZONNEVELD

Geleerd van het Informatica Instituut van de Universiteit van Amsterdam doen onderzoek naar slimme auto's en geavanceerde beveiligingsystemen. Hoogleraar Dariu Gavrila onderzoekt onder meer manieren om de beelden van beveiligingscamera's op een slimme manier te selecteren.

Hij laat een minuten durend filmje zien van een man die in een Berlijns metrostation door een stuk of vier anderen in elkaar geslagen wordt. "Dit heeft in Duitsland veel beroering veroorzaakt. Vanwege het geweld, maar vooral omdat tijdens de vechtpartij niet werd ingegrepen, terwijl er een camera op gericht stond. Die camera geeft een vals gevoel van veiligheid."

En dat is waar Gavrila met zijn promovendi Martijn Liem en Julian Kooij een systeem voor ontwikkelt. "We proberen aan de hand van computereerkenningen 'real time' te schatten wanneer sprake is van opvallend gedrag. De medewerker die vele beeldschermen moet bekijken, krijgt een selectie van beelden, of een melding als mensen zich opvallend gedragen." Wat precies onder 'opvallend gedrag' wordt verstaan, hebben de onderzoekers samen met veiligheids-experts bepaald. Het gaat onder meer om de beweging van armen en de frequentie van stemgeluid. Op die manier kan geschat worden of een situatie extra aandacht verdient.

Gavrila benadrukt dat inschatting door de mensen die de beelden bekijken noodzakelijk blijft. "Ons systeem kan bijvoorbeeld nog slecht onderscheid maken tussen vechtende en juichende mensen."

Bovendien wordt het systeem beïnvloed door bewegingen in de achtergrond, zoals treinen die een station binnenrijden, de wind, of soms zelfs de zon, waardoor de pixelwaarden ineens veranderen.

Hollywoodfilms zoals Minority Report, waarin menselijk gedrag met behulp van technologie kan worden voorspeld, is dan ook nog verre van de werkelijke mogelijkheden van observatiesystemen, zegt Gavrila.

"We staan nog maar aan het begin van het voorspellen van menselijk gedrag. Om goede berekeningen te maken, zijn veel data nodig, maar vanwege privacywetgeving is het heel moeilijk voldoende realistische situaties te analyseren."

Overigens vindt Gavrila dat het privacyprobleem bij zijn onderzoek beperkt is. "De geobserveerde personen blijven anonim, er vindt geen gezichts- of spraakherkenning plaats. Het systeem reageert alleen op gedrag en niet op het uiterlijk van mensen."

In het nieuwste onderzoek is Gavrila bezig met het inschatten van interactie tussen mensen onderling of die tussen een mens en een object. "Neem een karretjesautomaat op een station. Die kan je in het systeem aanduiden als belangrijk object. Als zich opvallende bewegingen richting die automaat voordoen, kan een beveiligingsmedewerker daar op worden gewezen."

In het filmje dat Gavrila laat zien, bewegen acteurs door het beeld, waarbij hun houdingen met rode zogenoemde '3D grafische mensmodellen' worden gevolgd. Op die manier is duidelijker te achterhalen wat iemand doet, onafhankelijk van de hoek waar vanuit de beelden bekeken worden. Dat helpt bij het beoordelen van agressieve handelingen of heimelijke activiteiten, zoals het ontsluiten van portemonnees door zakkenrollers.

Op de langere termijn verwacht Gavrila dat slimme camera's ook van pas zullen komen bij grotere gevaren zoals de bestrijding van terrorisme.

Gavrila werkt voor de Duitse autofabrikant Daimler aan slimme auto's, die onverwacht overstekende voetgangers kunnen ontwijken. Het systeem schat niet alleen de afstand tot een onverwacht obstakel op de weg, maar houdt ook rekening met tegenliggend verkeer.

Testbeelden laten een spectaculair manoeuvre zien als testpod 'Hans' ineens op de weg wordt gerold: de auto reageert binnen een fractie van een seconde en wijkt tot een meter uit, waarna de auto weer terugkeert naar de oorspronkelijke weggelegen.