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Abstract

Gavrila, D.M. and F.C.A. Groen, 3D object recognition from 2D images using geometric hashing, Pattern Recognition Letters
13 (1992) 263-278.

In this paper, a general technique for model-based recognition is discussed, called Geometric Hashing. Its purpose is to identify
an object in the scene, together with its position and orientation. This technique is based on an intensive preprocessing stage,
done off-line, where transformation invariant features of the models are indexed into a hash table. This makes the actual
recognition particularly efficient. The algorithm stands out for its high inherent parallelism and its ability to deal with occluded
scenes. This paper focuses on the use of Geometric Hashing for the case of 3D object recognition from 2D images. An efficient
method to represent a 3D model by its 2D projections is proposed. Results are presented of experiments on random data and
3D objects. It has been found that distinguishing between different types of features in a model or scene results in a very effi-
cient implementation of Geometric Hashing using a multidimensional hash table. The filtering ratio of this scheme turns out
to be high enough to allow reliable recognition with the correct feature correspondence between model and scene. The algorithm
performed succesfully in dealing with scenes with up to 50% of occlusion and performed at speeds in the order of one second

on a SPARC station.

Keywords. Geometric hashing, 3D object recognition.

1. Introduction

Research in robot vision has increased signifi-
cantly over the years. Much effort has been devoted
to the topic of object recognition, since this is an
important step towards the increased autonomy of
robot systems [3, 5]. The approach that has proved
useful in particular, is the model-based approach
in which recognition involves matching the input
image with a set of predefined models in a (CAD)
database. In most cases, recognition of a model is

not sufficient and should include the position and
orientation. An effective vision system must fur-
ther be able to deal with partial occlusion and noise
and still achieve an acceptable recognition rate.
This paper discusses Geometric Hashing, a
general technique for model-based recognition, in-
troduced by Lamdan and Wolfson [6]. It represents
arobust object recognition method where matching
is done on /ocal features of an object. A voting
scheme is used to evaluate the number of correct
matches. This makes this scheme particularly suited
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for recognition in occluded scenes. The object
modeling phase of Geometric Hashing consists of
describing the object by a set of points, called
interest points, together with their geometrical
relation. The same interest points are extracted
from the scene together with their geometrical rela-
tion. The matching consists of finding a compatible
transformation, between a set of points represent-
ing a model and the set of points representing the
scene. Finding this transformation determines the
position and orientation of the model in the scene
with a certain tolerance.

A key factor in Geometric Hashing is the divi-
sion between the preprocessing stage and the actual
recognition stage. The processing burden has been
concentrated as much as possible to the preproc-
essing stage, which is done off-line. This makes the
actual recognition stage as fast as possible, but
results in heavy memory demands. One of the ma-
jor advantages of Geometric Hashing further is its
high inherent parallelism both in the preprocessing
stage and in the recognition stage.

This paper is organized as follows. Section 2 will
start with an example of the Geometric Hashing
concept followed by a summary of the general
scheme. Subsequently, the complexity and error
analysis of the algorithm is discussed. An efficient
method to represent a 3D model by its 2D (model)
projections is proposed. Section 3 will discuss an
implementation of these methods together with its
memory requirements. In Section 4 some charac-
teristics of Geometric Hashing will be examined on
random data, in particular its ability to filter out
random solutions. The next step is to apply the
algorithm to the case of 3D objects in the scene.
Finally, Section 5 presents the conclusions. It will
turn out that by using different types of interest
points to describe models and scenes, the current
implementation is able to achieve reliable recogni-
tion at high speeds.

2. Geometric hashing

2.1. Affine transformation in 2D

Consider flat object recognition under affine
transformation (rotation, translation, scale and

264

PATTERN RECOGNITION LETTERS

April 1992

shear). This case occurs when we assume ortho-
gonal projection of the object on the viewing
plane. An affine transformation T can be described
by a 2x2 non-singular matrix 4 and a 2x1
translation vector b, mapping vector x to vector
Ax+ b. Since we have six degrees of freedom, the
transformation is fully determined by three point-
to-point correspondences. Given a set of points
describing the model and a set of points describing
the scene, we have to find the affine transforma-
tion which maps a subset of the scene points onto
a subset of the model points.

To compare the two pointsets, it is needed to
find some property of a pointset that remains in-
variant with respect to the transformation per-
formed. Let py, Py, and p, be three non-collinear
points in 2D space and let (p; —po,P2—Po) be a
basis spanning the 2D space with p, as origin. See
Figure 1.

Let the coordinates of a fourth point p with
respect to the chosen basis be (a, b). The key obser-
vation of Geometric Hashing is that if the whole
system undergoes an affine transformation 7, the
coordinates of the transformed point Tp with
respect to the transformed basis will remain (a, b).
This means that we have found a transformation
invariant property, i.e., the coordinates of points
with respect to a basis.

The process of recognition is now divided in two
stages: preprocessing (object representation) and
actual recognition (matching). In the preprocessing
stage a basis triplet is chosen from the model
points and the coordinates of all the other model
points are computed with respect to this basis. The
coordinates serve as indices to a hash table and for

p0 p2

Figure 1. Basis for affine transformation.
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each point a hash element containing (model, basis
triplet) is inserted at the appropriate entry. In the
actual recognition stage three points are chosen
from the scene and again the coordinates of all the
other scene points are computed with respect to
this basis. For each point, a vote is given to all hash
elements at the entry indexed by its coordinates. If
a model with m points lies unoccluded in the scene,
and the same basis triplet was chosen in the pre-
processing stage as in the recognition phase, the
combination (model, basis triplet) will get the max-
imum of m—3 votes. If the model was partially
occluded there will be k missing points and the
combination (model, basis triplet) will get as many
as m—k—3 votes, and may be still detectable. If
there are combinations that have collected more
votes than a certain threshold the process of Geo-
metric Hashing will deliver candidate solutions.
The chosen scene basis triplet, together with a com-
bination (model, basis triplet) gives three point-to-
point matches for an object which determines the
affine transformation. On the other hand, if no
combinations receive more votes than a certain
threshold we choose another basis triplet in the
scene and repeat the voting process. If all basis
triplets in the scene have been tried and no can-
didate solution has come up, the recognition pro-
cess ends with no recognition. To ensure that we
do not miss an object because one or more of his
basis points used in the preprocessing phase is
occluded in the scene, we repeat the preprocessing
stage for each basis triplet of a model. During the

PATTERN RECOGNITION LETTERS

April 1992

recognition stage, it is now sufficient to choose any
three scene points belonging to some object to en-
sure recognition.

The Geometric Hashing technique was illustrated
for the 2D affine transformation, but the concept
applies to a wide range of transformations in N-
dimensional space. It can be used for the 2D case,
when no depth information of an object is avail-
able, but it equally applies for the 3D case, when
range or stereo data is available.

Of particular importance is also the similarity
transform, which we will use later. In this case we
have translation, rotation and scale in 2D. A two
point basis (pg,p;) is enough to form a basis
which spans the 2D space. The first basis vector is
chosen between the two points and the second lies
counterclockwise orthogonal to the first.

The advantage of choosing the middle of p, and
p, as origin of the new coordinate frame (Figure
2b), instead of placing the origin at one of the basis
points (Figure 2a) is that the hash table becomes
more balanced after the preprocessing. To see this,
observe that if the coordinates of a third point with
respect to basis (pg,p)) is (x,¥), it is (=x, —y) with
respect to (p,,po). Therefore, if both orderings
are used as a basis, the hash table will be sym-
metrical.

2.2. The general scheme

The general outline of the algorithm is as follows
(see Figure 3, from [6]).
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Figure 2. Basis for similarity transformation.
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Figure 3. The general scheme of Geometric Hashing.

(1) Preprocessing stage (object representation)

For each model do:

(a) Extract a set of interest points (let their
number be m).

(b) Determine the minimum number k of basis
points needed to define a basis in which all the other
m — k points have transformation invariant coor-
dinates. This number depends on the dimension of
the space and the transformation involved.

(¢) For each such k-tuple (a focus of attention)
do: compute the coordinates of the other m—k
points and for each point store at the hash entries
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indexed by the coordinates of the hash element
(model, k-tuple).

(2) Recognition stage (matching)

(a) Extract a set of interest points (let their
number be n).

(b) Choose a k-tuple of non-collinear points as
a basis (focus of attention), and compute the coor-
dinates of the rest of the scene points with respect
to this basis. If there is no k-tuple left, the recogni-
tion process stops with no recognition.

(c) For each coordinate access the hash table
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and vote for all hash elements (model, k-tuple) ap-
pearing there. Each such vote suggests the presence
of a certain model together with the transforma-
tion given by the correspondence of the model k-
tuple and the scene k-tuple under investigation.
The vote accumulator has Zf-z/lv mf‘ entries where
N is the number of models and m; the number of
interest points of model i.

(d) Step through the vote accumulator and look
for (model, k-tuple) pairs that received more votes
than a certain threshold. The maximum number of
votes possible for an object with m; points is
m;— k. If no pairs have received more votes than
the threshold, go back to step (b), else continue.

(e) Track all points that voted for a candidate
transformation and induce additional point cor-
respondences. Use a least square method to find
the best transformation for the points involved,
this is supposed to be more accurate than the
transformation based solely on the correspondence
of the k-tuple basis points.

(f) Verify the candidate model and transforma-
tion by transforming a/l/ edges (not only interest
points) in the scene accordingly and comparing
them with the model edges. If this step confirms
the presence and orientation of an object, then
recognition is complete (if more objects can be ex-
pected in the scene, the search continues, after
removing all interest points in the scene belonging
to the recognized object). If this step rejects a can-
didate solution, another candidate solution offered
by step (e) is analyzed. If all candidate solutions
are rejected, we are back to step (b).

Some important points can be made here:

- Geometric Hashing should not necessarily be
taken as a conclusive recognition algorithm. Step
(d) will generally produce more than one solution.
Geometric Hashing is basically a fast filtering pro-
cedure where promising candidate solutions are
selected from the vast amount of possible transfor-
mations and then offered to a verification method.

- The algorithm described above is independent
of the choice of interest points. For example, a
database with polyhedral objects would suggest to
take vertices as interest points, but also more com-
plex geometric features, or even non-geometrical
features like high variance in intensity values could
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be used [6]. Moreover, one can use the above
scheme using different types of interest points at
the same time. The idea is that corresponding
points in the model and scene must be of the same
type. The advantage of this is that, in the recogni-
tion stage, voting takes place only in the relevant
part of the hash table and is thus more efficient
and reliable. In general, the more specific the
features represented by the interest points, the
more effective Geometric Hashing will be. The ac-
tual extraction of image features however is done
by a layer that lies under Geometric Hashing [2, 8].

- Because models may vary in the number of in-
terest points they have, it makes sense to define the
threshold in step (d) of the recognition process
relative to this number. That means that we may
introduce a global threshold which specifies the
fraction of point correspondences out of the max-
imum which are needed to accept the solution as a
candidate. So if ¢, is the relative threshold and ob-
ject i has m; points, the number of votes v model
i needs is:

U?tr’mi"k.

Doing this, threshold ¢, is a direct measure of the
amount of occlusion we tolerate. At least £ - 100%
of an object must lie unoccluded in the scene. At
the same time one could still have a global absolute
threshold to eliminate candidate solutions of
models which have relative few interest points and
are likely to have arisen by accident. 7, gives the
minimum number of votes v a model / needs:

v=2i,.
2.3. Complexity analysis

Let us examine the complexity of the presented
algorithm. In [6] Lamdan and Wolfson argue that
for a single model with m points and a scene with
n points the worst time complexity is o(m**1 in
the preprocessing stage, and On**'y in the
recognition stage. They notice that in the pre-
processing stage, there is a maximum of m* dif-
ferent basis k-tuples, each requiring m—k hash
element insertion operations. In the recognition
stage, there is a maximum of n* different basis
k-tuples, each requiring n—k coordinates to be
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computed. This is certainly true, but having a large
hash table, it is not the computation of the coor-
dinates that requires the effort at this stage, it is the
actual voting process. Therefore the quantity that
determines the worst time complexity in the recog-
nition stage should be the amount of votes given,
which has in the general case the complexity of:

O(#hash elementsx #hash accesses(rec.)) (1)

if there are N models each with m modelpoints,
this gives:

O(N X #basis_prepxmXx #basis_recxn) (2)
which gives:
O(Nxm*+! xnk*h) (3)

if all possible k-tuples are chosen as basis. Equa-
tion (1) is based on the observation that the amount
of votes given in the recognition phase is propor-
tional to the number of hash elements and hash ac-
cesses, for a certain distribution of hash accesses
and elements. It is this complexity that one should
use while comparing, as in [6], the Geometric
Hashing with other techniques like alignment and
Hough transform. This complexity was confirmed
in the experiments described in Section 4.

It can be seen that the number of interest points
in the preprocessing and recognition stage (m and
n) has a great impact on the complexity of the
algorithm. Choosing interest points such, that they
represent salient features, has the advantage that it
reduces m and n. The time complexity can be
reduced even if both m and n are large by using
both in the preprocessing and recognition stage on-
ly a subset of all possible k-tuples as basis. This
subset could be based upon a relation R between k
interest points that is invariant with respect to the
transformation performed and to use in the pre-
processing and recognition stage only those k-
tuples as basis which have relation R.

2.4. Error analysis

We will give an error analysis for the 2D affine
transformation, although much applies also for
the 3D case. There are basically two types of errors
involved, errors that occur due to the quantization
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of the hash table and measurement errors in the
location of the interest points.

Due to the hash quantization in the preprocess-
ing stage two hash entries can be stored in the same
hash bucket though the indexing coordinates were
different (see p;, p, and p; in Figure 4). That
means that in the recognition stage we will vote not
only for the hash elements associated with a par-
ticular coordinate, but also for those associated
with the neighbouring coordinates (for example,
p, would vote for p, and p; too in Figure 4). This
quantization error increases with the cell size of the
hash table. (We will prevent that the coordinate of
a point falls beyond the coordinate range of the
hash table (like p, in Figure 4) by placing restric-
tions on the allowable basis choices).

In the recognition phase, we have an error in the
measurement of the coordinates of an interest
point. The coordinates can be represented as a vec-
tor in 2D space with an appropriate norm, usually
the Euclidean L, or the maximum coordinate
norm L. Assume that the measurement of in-
terest points in the scene introduces a maximum er-
ror ¢ in a certain norm.

For affine transformations we had to compute in
the recognition stage the coordinates x of a fourth
point p with respect to basis triplet (bg, by, by).
This can be formulated as finding the solution of
the linear system [7]:

Ax=c¢

where, if b, is the new origin, the columns of A
are the vectors b; — b, and b,— by, and c is the

bin size

coord range

Figure 4. Quantization errors.
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vector p—b,. Taking noise in consideration, the
question now is:

Given the maximum error € on the triplet of basis
points (by, by, by) and on the fourth point p, what
is the error on the vector q which gives the coor-
dinate of p relative to this basis?

As was noted in [7], this problem can be stated
as finding the solution of the linear system:

(A+J0A)(x+dx)=c+dc

where 64 represents the error on matrix 4, and Jx,
dc the errors on vectors x and ¢. In this case, the
absolute entries of 4 and Jx are less than 2¢.

In Golub [4] a treatment of the above linear
system, expanding x in its Taylor serie, leads to the
following results:

x+0x =x+A"(dc— A4 x)+0(e?),

|6x| < |A ™1 (dc— 0A x)| + O(e?) 4)
<|47'|(|¢| + 4] - |x])+O(e?) (5)
< x| k(A)- (M + '—‘5ﬂ> +0(e?) (6)

|A| le|

where k(4)=|A|-|A™'| is the condition number
of the matrix 4. Inequalities (4), (5) and (6) give a
stepwise rougher first-order estimate of the max-
imum error |dx| which can be introduced when
computing the coordinate of a fourth point with
respect to a basis triplet. But note that A4 and dc,
as well as their norms, are unknown in our case.

————f =
1

[ ool Shooie |

i
|
|

| & N S

bin size

coord range

Figure 5. Voting for a neighbourhood.
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The thing to do is to use an upper bound of these
norms in (5) or (6), which depends on the max-
imum error ¢. For example in L, norm this will be
4¢ for 6A and 2¢ for dc.

The difference with the error free algorithm
presented so far, is that in the recognition stage, we

~do not vote solely for the hash bin indexed by the

coordinate of x but we also vote for all hash bins
which lie in a neighbourhood of |dx|. See Figure 5
for the L, case. Note that due to the hash table
quantization error, we vote for more than a neigh-
bourhood of |dx|. If the coordinate of x falls out
of the hash table range, we vote for the intersection
of the neighbourhood |éx| and the hash table
range.

Equations (4), (5) and (6) are independent of the
norm used. In the case of similarity transformation
the column vectors of 4 are orthogonal (Section
2.1) and k(4)=1 in L, case and at most 2 in L,
norm. In the case of affine transformation, k(A4)
is not necessary bounded and that can introduce a
great uncertainty |dx|. Another source of large
errors arises when the length of the basis vectors
are small with respect to the error ¢ and if |x| is
big. Since it is possible to estimate whether a basis
will introduce a relative large amount of error (by
checking k(A) or checking whether the length of
basis vectors lies under a threshold) on forehand,
it makes sense to skip these triplets without enter-
ing the voting proces. The presence of a certain
model can still be recovered from other triplets in
the image.

In the case of L., we can obtain a sharper
estimate on |dx| than (5), by using that

|04 x| <2e(|x | + x|+ + | )5

rather than the general |64 x| <|dA| |x|.

This new concept of ‘voting for a neighbour-
hood’ has some important implications for the
voting scheme. Consider in a hash table those hash
elements belonging to a particular model and a
particular basis triplet. See Figure 6.

Four hash elements were stored in the hash table
at the bins corresponding with points py,...,ps-
Assume that during recognition the same bins were
accessed, with tolerance dx as shown in Figure 6.
In this situation point p;, for example, would vote
3 times for the same (model, basis) combination, at
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bin size

coord range

Figure 6. Vote count in a neighbourhood.

p:» P> and p,. In addition, p, would vote for the
second time for the same (model, basis) combina-
tion, at location p,. The problem is that one coor-
dinate may vote more than once for the same
(model, basis) combination and that several co-
ordinates may repeatedly vote at the same bin for
a (model, basis) combination. That is, a scene
point may be associated with more than one model
point and, conversely, a model point may be
associated with more than one scene point. See
Figures 7a and 7b.

This makes the vote count scheme, as discussed
so far, an unreliable measure for the similarity be-
tween model and scene. What is needed is a
criterium to select candidate solutions, which takes
into account that one scene point (s.p.) can corre-
spond only to one model point (m.p.). So candidate
solutions should be based on the maximum
number of distinct point correspondences between
the model and scene point set. If the maximum
number of different correspondences is higher
than a certain threshold accept, else reject. This is

model points scene points

—

model points scene points

.

(a) (b)

Figure 7. Distinct correspondences.
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illustrated in Figures 7a and 7b. The maximum
number of distinct point correspondences in Figure
7ais 3 (m.p. 1 with s.p. 1, 2 or 3, m.p. 2 with s.p.
4, and m.p. 3 or 4 with s.p. 5) while in Figure 7b
it is 4 (m.p. 1 with s.p. 2, m.p. 2 with s.p. 1, m.p.
3 with s.p. 3 or 5, and m.p. 4 with s.p. 4). Note
that the ‘vote count’, as discussed before, which is
the number of links, is higher in Figure 7a than in
Figure 7b.

The notion of the maximum number of distinct
correspondences between two disjunct point sets
appears also in Discrete Mathematics as the size of
the ‘maximum match’. It involves computing all
possible subsets S of a point set P. A more efficient
way is to determine the number of different scene
points and different model points involved in the
correspondences and to use the minimum of these
two as criterium:

min(#mpoints, #spoints).

In some cases this criterium will give a count that
is higher than when using the maximum number of
distinct correspondences criterium, but this would
be compensated by the straightforward computa-
tion of this criterium.

To be able to calculate these correspondences,
we include in a hash element (model, triplet) the
model point which was responsible for this entry.
In the recognition stage, voting by incrementing a
counter of a (model, basis) combination is replaced
by adding a model-scene point correspondence to
the combination.

2.5. From 3D to 2D

So far, we have only considered the case where
the object and scene representation have the same
dimension in space. When recognizing a 3D object
from a single 2D image, there is an additional prob-
lem of the reduced dimension of the image space,
compared with the model space. This problem can
be solved by representing a 3D model by its 2D
projections. When an orthogonal projection on the
viewing plane is assumed, the two projections of
an object taken from the same viewing angle are in
similarity correspondence. The set of viewpoints
with equal distance to the center of the model, at
different viewing angles, represents a sphere, the
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viewing sphere. In the model representation stage
we tessellate the viewing sphere and represent a 3D
model by its 2D (model) projections at the dif-
ferent discrete viewing angles.

For each of the model projections we have to
compute coordinates of visible model interest
points with respect to a chosen basis. For each
coordinate the quadruplet (model, viewing angle,
basis, point) is stored in the hash table.

In the recognition stage we are looking for a 2D
similarity transform between a scene and a certain
2D model projection. Votes will be given for
triplets (model, basis, viewing angle). A triplet
with high score indicates the presence of a model
with the specified orientation. Since the number of
model projections is finite, the projections which
lie between the model projections will be seen as
having a tessellation error &p compared with the
nearby model projections. In other words, their in-
terest points are within an absolute distance of et
to the corresponding points of a nearby model pro-
jection, if any. In the recognition stage we will
make use of the results of Section 2.4 and supply
the algorithm with an error ¢ that is high enough
to account for both the tessellation error &r and
the measurement error &y.

Let us examine the model representation stage in
more detail. Its aim is to represent a 3D model by
such a set of 2D projections that any projection of
the model will be recognized as one of its nearby
model projections, using a value for ¢ as discussed
in Section 2.4 based on the tessellation error ér.
There exists a strong relationship between the
tessellation error &7 and the tessellation constant.
The smaller the tessellation constant is (finer
tessellation grid), the smaller ey can be expected to
be and vice versa. Therefore, one way to guarantee
the successful recognition of any projection of a 3D
model could be to use an error ¢ based on an upper
bound of &, given a certain tessellation constant
of the viewing sphere. It turns out that although it
is straightforward to derive such an upper bound
for a 3D model of radius R, this results in a very
rough and inpractical upper bound. The algorithm
will be able to work with a much lower &, since:

~ The recognition of a projection is not neces-
sary for all its bases with the maximum number of
point correspondences (votes). It is sufficient that
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the projection obtains enough votes for certain
basis choices to distinguish it from random solu-
tions.

- It is not the absolute deviation of individual
points, compared with their corresponding points
of a nearby model projection, that is significant
and should be less than e=ér. Important is the
relative position of the shifted points with respect
to the shifted basis.

_ The error formula (5) results itself in a |dx]|
that corresponds most of the time to a higher error
than the ¢ actually provided.

In absence of a useful theoretical relation be-
tween the € and the tessellation constant, a reason-
able approach to assure that a certain tessellation
is fine enough for a value of ¢, is to check this ex-
plicitly by experiments. In particular, when using a
triangular tessellation of the viewing sphere, one
could check for all projections that correspond to
the midpoint of the triangles, whether they are
recognized, using the chosen &. A projection is
considered recognized when it is recognized for a
certain fraction of its bases with a certain fraction
of point correspondences. The requirement that a
projection is recognized for different basis choices
enhances robustness, in view of occlusion and
noise.

Observing that the structure of a 2D projection
varies in certain areas of the viewing sphere more
than in others, it would be wasteful to have an
overall tessellation based on that needed for the
areas of the viewing sphere where the structure of
a 2D projection varies rapidly. Therefore the idea
of a uniform tessellation is abandoned in favor of
the following more efficient approach. We start as
before with a rather coarse triangular tessellation
of the viewing sphere (say at intervals of 15
degrees), choose a certain &g to work with, and
check for each triangle whether the projection cor-
responding with the midpoint is recognized using
that eg. If this is the case, we proceed with the
next triangle. If not, split the triangle in four
smaller triangles and continue recursively the proc-
ess on each of the smaller triangles. Each time a
triangle is split, three new model projections are
added to the model base, corresponding to the
midpoints of the edges of the original triangle. The
idea is that new model projections are only added
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to the model basis whenever the chosen &g proves
insufficient to map non-model projections to exist-
ent model projections. The final result of this proc-
ess is that the whole viewing sphere is covered.
Quite understandable, the error ¢ used in the
recognition stage will have to satisfy e>ég, In
order to maintain the integrity of the recognition
algorithm.

Observe that all actions described above take
place in the model representation stage, which is
done off-line. The result is an efficient representa-
tion of a 3D model by its 2D projections.

If the object under consideration is symmetrical
the number of 2D projections N can be reduced by
a factor. Also, if the viewpoint is constrained to
some region, like in some industrial applications
where the position of the camera with respect to
the object is known, N can be further reduced. The
advantage of representing a 3D model by its 2D
projections is that constraints on viewpoint are
easily incorporated.

3. Implementation

3.1. GEOHASH

To recognize 3D objects from 2D images, a se-
quential version of the Geometric Hashing concept
has been implemented for the 2D similarity trans-
formation. The program is called GEOHASH and
was written in C. The model representation stage
consists of an initial uniform tessellation, followed
by a recursive split-process. The hash table is
multi-dimensional, which facilitates the hashing of
different types of interest points. The output con-
sists of candidate point correspondences between
various models and scene. The last step of Geo-
metric Hashing, finding the best transformation in
least square (Figure 3), was not included at this
point. All error analysis, discussed before, is in-
cluded. In addition GEOHASH allows the user to
specify all the noise related parameters, such as the
noise g, hash bin size, and the thresholds.

3.2. Memory requirements

The key operation during recognition is access-
ing the hash table and voting. To get high speeds
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the hash table and voting accumulator should be in
the main memory. So we will examine the memory
requirements of the three data structures: (1) the
vote accumulator, (2) the initial hash table, and (3)
the hash elements.

(1) The vote accumulator keeps track of the vote
count for a certain model-basis combination. It
needs storage for #models X #bases_prep entries.
Noticing that a range of 0 to 255 is quite sufficient
for the vote count, it is enough to use one byte.
Therefore:

memory requirements
= #models X #bases_prep bytes.

For a typical 20 3D models, having a number of 2D
model projections that corresponds to a uniform
tessellation with patches of 10 degrees each, we
have #models=20%36x18=12960. Taking the
number of allowable basis choices per model to be
15 (which is quite reasonable), this gives:

memory requirements = 12960 x 15=194 Kb

which is not a major problem.
(2) The initial hash table needs storage for

hash_coord_range \?
nhash_tables X 4 X < >

hash_bin_size

hash bins. In this expression, nhash_tables denotes
the number of 2D hash tables needed which
depends on the dimensionality of the hash table.
Notice the quadratic dependence on the bin size.
Each hash bin requires a pointer to the set of hash
elements stored at the bin and space to store the
scene points which mapped onto this bin at recog-
nition time, in order to track the point corre-
spondences of the solutions. Assume a mean of n
bytes is sufficient for the latter purpose. Taking
four bytes for a pointer, this gives:

memory requirements = nhash_tables X 4

hash_coord_range \*
( — > X (4 + n) bytes.
hash_bin_size

For nhash_tables=5, a typical range of 0to 10, a
hash bin size of 0.1 and a mean n=5, this gives:

memory requirements=>5X4X 100*°x9=1.8 Mb

which should be taken in consideration.
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(3) There are #modelsx #bases_prep X ( #model-
points — k) hash elements stored in the hash table,
where k denotes the number of interest points of a
basis. Each hash element specifies a model, a basis
point pair, and the model point responsible for this
entry. Taking a short, two characters and a char-
acter respectively for these entries, and taking two
bytes for a short, one byte for a character, we get:

memory requirements
= #models X #bases_prep
x (#modelpoints —2) X 5 bytes.

Taking again #models=12960, mean #bases_
prep= 15 per model, and mean #modelpoints =20
per model, this gives:

memory requirements
=12960%x 15%x18x5=17.5 Mb

which is quite a lot to have in main memory, €ven
for these days.

As could be expected, the storage of the hash
elements is the determining factor. The example
presented seems to represent a limit case: a total
memory requirement of just below 20 Mb could be
supplied in main memory of a SPARC-compute
server. Note that an object database of 20 3D ob-
jects is quite sufficient for most industrial applica-
tions. If needed, one may lower the mean #bases_
prep per model which would allow a larger number
of 3D models.

4. Experiments
4.1. Random experiments

Geometric Hashing is a filtering method which
selects from the vast amount of possibilities the
promising solutions. The filtering ratio, between
all possible solutions and the ones Geometric
Hashing presents, should be significant enough to
make Geometric Hashing applicable. As Lamdan
and Wolfson note in [7], the filtering ratio of
Geometric Hashing is equal to the probability that
a certain random solution has received ‘by acci-
dent’” more votes (based on a certain criterium)
than the threshold 7.
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Another interesting issue is the complexity of
the Geometric Hashing scheme, which is de-
termined by the number of votes given in the
recognition stage. How is this influenced by
parameters like the number of models, the number
of interest points, the hash bin size and the
error? We would also want to examine the typi-
cal distribution of the hash elements in the hash
table.

In order to investigate these problems for the
similarity transformation, random experiments
have been performed with large 2D object data-
bases of N=50, N=100 and N=250. The models
consisted each of 15 points and the scene had 25
points. All interest points were considered of the
same type. The models and scene consisted of ran-
dom dots with the coordinates (x,y) uniformly
distributed in the range of 0-511. All possible pairs
of points were chosen as basis, in the preprocessing
stage as well as in the recognition stage. In the
preprocessing stage one pair of points accounted
only for one basis choice (one of the two order-
ings), in the recognition stage it accounted for two
basis choices (both orderings). This means that in
the case of N=250 there are approximately
250 % (15 % 14/2)x 13=3.4x 10° hash elements in
the hash table, and in the recognition stage there
are approximately 25x24%x23=13800 hash ac-
cesses. These figures are taken so large to get a
good estimate of the natural distribution of hash
elements in the hash table and the probabilities in-
volved.

The following parameters of GEOHASH were
used in all random experiments, unless stated
otherwise:

abs. threshold =35,

rel. threshold=0.0,

hash coord. range=10.0

(-10<x< 10 and —10<y<10),

min. dist. basis=50.0,

hash bin size=0.1.
The min. dist. basis sets a lower bound on the
tolerated distance between basis points to avoid in-

troducing a large error in the coordinates of the
third point, see formula (5).
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4.1.1. Hash table distribution

The hash table distribution in the case of N=250
was calculated. Examining this hash table distribu-
tion, we noticed a bell shaped (Gaussian-like)
distribution, highly centered around the origin.
The hash elements in the coordinate range |x|,
| ] <2 account for 89% of all hash elements. Con-
versely, the distribution of hash elements not only
tells something about the preprocessing stage, but
it can also be interpreted as a probability distribu-
tion for hash accesses in the recognition stage.
Therefore it can be expected that for 89% of all
hash accesses in the recognition stage we will have
a |x|<2 in L, and that is interesting to know
because it influences the error |dx| in the error for-
mula (5). Further, if we want to distribute the hash
clements uniformly over the hash bins, we can use
the standard error function (i.e., the integral of the
Gaussian distribution) to convert the coordinates
of the hash elements, before accessing the hash
table.

4.1.2. Hash bin size

Increasing the hash bin size will increase the
hash table quantization error. This is illustrated
for the N =50 case with error e=2.0.Table 1 lists
the number of solutions that received ‘by accident’
k votes for different bin sizes.

It can be seen that a larger bin size substantially
increases the number of random solutions at any
level. It seems that it would be a good idea to take
the bin size as small as possible. Indeed, this would
make the voting scheme as accurate as possible,
but the cost for this is increased memory require-
ment of the hash table, especially if the latter is
multi-dimensional. Also, making the bin size small
means that in the voting part there will be many
more bin accesses needed for the same voting
neighbourhood. This slows down recognition. On
the other hand, the recognition time would also in-
crease if a large bin size was taken; more solutions
are needed to be processed in the retrieval part,
which is relatively time consuming. What is needed
is a compromise on the value of the bin size, a size
in the range of 0.05-0.1 (corresponding to a hash
table of 400X 400 to 200x 200 bins) seems most
suitable. In the 3D object recognition experiments
of the next section, a bin size of 0.1 was chosen.
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Table 1
Effect of bin size on vote distribution
#votes bin size =0.05 bin size=0.1 bin size =0.2
5 1730 23271 175451
6 263 5816 103494
7 47 1280 55713
8 14 215 26831
9 4 27 11125
10 1 7 3687
11 0 0 900
12 0 0 127
13 0 0 9

4.1.3. Significance of solutions

To examine the probability that a certain random
solution receives more than k votes, we examine
the fraction of all possible solutions that has
received more than k votes. In general, if we have
N models with m points and a scene with s points,

the number of all possible solutions is NX

}n(m— 1) xs(s—1)/2 if each point pair is chosen
once as a basis in the preprocessing stage and twice
in the recognition stage. Therefore, we have to
divide by this number. If we take k to be our ab-
solute threshold, then the computed probability
represents the filtering factor of Geometric
Hashing. The smaller this factor is, the more effec-
tive Geometric Hashing is.

Experiments have been performed to compute
the probability that a certain random solution
receives k votes for various error levels (¢=0.0,
1.0, 2.0 and 3.0). See Table 2. It was found that
this probability is nof affected by the number of
model basis choices in the preprocessing stage,
apart from a statistical error. One may assume that

Table 2

Probabilities of random solutions

#votes £=0.0 e=1.0 e=2.0 e=3.0
5 6.1e-4 2.4e-3 7.8e-3 2.1e-2
6 8.9¢-5 4.7e-4 2.0e-3 7.0e-3
7 9.7¢-6 7.5e-5 4.1e-4 1.9e-3
8 8.le-7 9.0e-6 7.1e-5 4.4e-4
9 6.7¢-8 8.1e-7 9.1¢-6 8.4e-5

10 0.0 0.0 8.1e-7 1.5e-5

1 0.0 0.0 0.0 2.6e-6

12 0.0 0.0 0.0 2.7e-7

13 0.0 0.0 0.0 6.7¢-8
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the probability distribution is neither dependent on
the number of scene bases chosen. Yet the number
of model and scene points does affect the prob-
ability distribution. The probabilities given in
Table 2 are based on the N=250 case.

Using these figures, we can get an impression of
the number of false solutions with k votes that will
occur, given there are 15 model points and 25 scene
points, all of the same type, and given the other
fixed parameters (table bin size, rel. threshold,
min. distance basis etc). For example, consider the
case of £=2.0. It is expected that 4.1 x 107 of all
possible solutions will have 7 votes at this error
level. Assume we have an object database of 12960
2D models (which represent 20 3D models at a
tessellation of the viewing sphere of 10 degrees)
with a mean number of 15 basis choices per model
and 20 basis choices in the scene. In this case, the
number of all possible solutions is 12960 X 15X
20=3.9% 10° It is expected that approximately
3.9% 10°x 4.1 X 10"*=1599 random solutions will
receive 7 votes. In order to avoid these random
solutions, the relative threshold must be set higher
than 60%. In general, the higher error level, the
higher relative threshold must be set to allow a
good filtering ratio, and the less occlusion can be
tolerated.

4.2. 3D object recognition

In order to examine the performance of Geo-
metric Hashing in the case of 3D object recogni-
tion, experiments have been performed on a
database of six polyhedral 3D objects. The objects
under consideration were the six letters M, A, R,
L, E and N in 3D (see Figure 8).

The objects were represented with a wire frame
model. The actual database consisted of the 2D
projections of these objects at discrete viewing
angles and was built using the method described in
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Section 2.5. Since the 3D models M, A, E and N
have an axis of symmetry, only half of their view-
ing sphere was tessellated. A 2D projection of a 3D
model at a certain angle was obtained using the
program HIDLINPX [1], which also did hidden
line removal. HIDLINPX was also used to generate
scenes for a specific angle. Simulating a camera of
512x 512 pixels looking at a scene, HIDLINPX
scales the 2D projection to a size of 400 x 400,
taking into account that a camera is never fully
zoomed in.

In these experiments, the interest points are the
vertices and the bases are the vertices connected by
an edge. Connectivity is indeed a transformation
invariant property. Since the choice of vertices as
interest points is hardly sufficient to capture the
essence of a scene, the vertices were labeled by the
number of outgoing edges. So the interest point
can be of different type. The case of a T-vertex, the
intersection of one edge occlnded by another, will
be considered of type 1. For a correspondence be-
tween a model and a scene point, we require both
to be of the same type. This means that for a scene
point to vote for a certain hash element, the scene
point must have the same type as the model point
of the hash element, and both model and scene
bases must match. This is implemented efficiently
by using a multi-dimensional hash table, where, in
addition to the coordinates of a point, the type of
the point and the type of its basis are part of the
index.

In addition, we require that all outgoing edges of
corresponding points match as well. In order to
match the edges, their relative orientation with re-
spect to the basis under consideration is computed.
This outcome is invariant under the similarity trans-
formation. Two edges are considered to corre-
spond whenever their difference in relative orienta-
tion is less than 30 degrees. Important is to observe
that with these extensions, matching is still done

Figure 8. The letters M, A, R, L, E and N at (p=45°, y= 135°).
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Table 3
Summary of model representation stage
3D Letter #models #models #models rest

(s=195) (s=17.5) (s=3.75)

M (1/2) 140 + 86 (42/278) + 10 (4/168) 0
A (1/2) 140 + 52 (24/278) + 0 (0/96) 0
R (1/1) 278 + 59 (24/552) + 10 (4/96) (4/16)
L (1/1) 278 + 246 (117/552) + 87 (35/468) (11/140)
E (1/2) 140 + 73 (28/278) + 13 (5/112) (5/20)
N (1/2) 140 + 81 (42/278) + 30 (12/168) (1/48)

on basis of information locally available at interest
points: vertices and orientation of outgoing edges.
In order to save memory, a pair of basis points
accounted only for one basis choice in the pre-
processing stage. Consequently, the recognition
stage needed to consider both basis orderings,
whenever they were indistinguishable by type.

4.2.1. Model representation

Table 3 summarizes the results of the model
representation stage for the 3D letters M, A, R, L,
E and N. The following parameters were used:

abs. threshold=3,

rel. threshold=0.75,

hash coord. range=10.0
(-10<x< 10 and -10<y<10),

min. dist. basis=40.0,

hash bin size=0.1,

error level £=2.75.

The method used here was an initial uniform
triangular tessellation of the viewing sphere with
tessellation constant of 15 degrees. This was
followed by a recursive SPLIT process where
triangles were split and new model projections
were added, whenever needed, using the method
described in Section 2.5. A test projection was con-
sidered recognized when more than 20% of the
edges resulted ina successful basis, which identified
a nearby model projection with more than 75% of
the possible point correspondences. A model pro-
jection was considered nearby if it was within 15
degrees, in terms of both spherical angles ¢ and v.
An error level ¢ in the range 2.0-3.5 proved the
most suitable in terms of the trade-off between the
number of 2D projections needed and the number
of random solutions that came up.
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See Table 3. The column under s= 15 lists the
initial number of model projections, 140 or 278,
depending on whether the half (1/2) or the whole
(1/1) of the viewing sphere was tessellated. The
number of model projections added at the first
split of triangles is listed under the column s=7.5
(the ‘size’ s of the smallest triangles is now 7.5).
The ratio between brackets denotes the ratio of un-
successful recognitions of midpoints of triangles to
the total number of midpoints checked, at this
step. In general, most of the projections that were
indeed recognized, were recognized for a much
higher percentage of their total scene bases than
the 20% required, typically for more than 50%.
The s=3.75 column lists the results of the second
recursive step of the split-algorithm, resulting in
some triangles of size 3.75. For each unsuccessful
recognition at the s= 7.5 step (nominator fractions
between brackets) we have now four new tests (col-
umn s=3.75, denominator fraction), correspond-
ing to the midpoints of the 4 smaller triangles. The
results of the third step are listed under the last col-
umn ‘rest’, no more model projections have been
added. The unsuccessful recognitions at this point
deal with projections with highly unstable 2D
structure.

4.2.2. Scene recognition

The presented algorithm has been tested for
several scenes. Figure 9 shows three of them. None
of the projections in the scenes are model projec-
tions. The relative threshold, i.e., the fraction of
occlusion tolerated, was set to t.=0.75, t,=0.7
and ¢, =0.5, for the scenes of Figure 9 from left to
right. Other parameters, such as the error level ¢,
remained the same as in the preprocessing stage.
All allowable bases choices were computed, in
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Figure 9. (a) Scene M, (b) scene RL, (c) scene E.

random order. What remains is an examination of
the reliability of Geometric Hashing in the basic
case. See Table 4 for the resulting vote dis-
tribution. The numbers between brackets denote
the number of correct solutions within 15 degrees
plus (+) the number of correct solutions within
15-30 degrees, in terms of both spherical angles ¢
and .

In such a distribution, the correct solutions, if
any, should be among the solutions that have come
up multiple times, with high vote counts and high
percentage of votes out of the maximum. In the
case of the unoccluded M at ¢ =51 and y =53, all
the solutions that have acquired the highest three
vote counts, represent indeed the correct solution.

Table 4
Vote distribution at recognition
#votes scene M scene RL scene E
3 0 0 21
4 0 0 87
5 30 0 0
6 0 26 (10+6) 0
7 10 3 20
8 0 4 (1) 3
9 0 6 (5) 1
10 4 0 20 (17+3)
11 4 0 7(7)
12 8 0 0
13 14 0 0
14 4 0 0
15 11 (9+2) 0 0
16 4 (4) 0 0
17 13 (11+2) 0 0
18 0 0 0
19 0 5@+1) 0
20 0 8 (8) 0

For the RL scene, the vote distribution is split in
two clusters. The cluster at the higher vote counts
consists entirely of the correct solution R, while the
one at the lower vote counts strongly advocates the
second correct solution L. Finally, the scene of the
occluded E is also correctly recognized by all of the
solutions with the highest vote counts. This last
scene illustrates one of the strengths of Geometric
Hashing, the local matching of interest points, in-
dependently of the others. The occluding surface
has split the visible part of the E in three separate,
not connected segments. It is also interesting to
examine what other solutions are suggested by the
algorithm, at the lower vote counts. In this case,
the vote counts at 7, 8 and 9 all suggest M or N
lying on the side and mark the lower and upper
visible E part as the legs of M or N.

As can be seen, using Geometric Hashing in this
way achieves such a high filtering ratio that it im-
plicitly provides the correct solutions. It also pro-
vided the correct point correspondences between
model and scene points. Moreover, the recognition
is robust; the correct solutions came from bases at
different edges (Table 5). A verification procedure
has only a light task left.

The runtime performance of Geometric Hashing
was encouraging. Using a SPARC workstation,
the average CPU time needed per basis con-
sidered in the scene was 0.8 s, 0.6 s and 1.0 s.
Taking into account onmly the successful bases,
these figures were 1.55,0.7sand 2.1s. It is expected
that the use of a massive parallel machine like the
Connection Machine will reduce the above figures
dramatically, since separate processors can be
assigned to parts of the hash table and vote
accumulators.
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Table 5
Number of successful bases

#edges #edges allowed #edges succesful
visible as bases as bases

M 23 20 5

R 22 8 7

L 13 6

E 12 12 11

5. Conclusions

In this paper the Geometric Hashing technique
was discussed for model-based recognition. The
focus has been 3D object recognition from 2D im-
ages. Several results from random experiments and
scenes containing 3D objects were presented. An
efficient model representation scheme was propos-
ed, based on the representation of a 3D model by
a non-uniform set of 2D model projections. The
underlying idea was to require that any 2D projec-
tion of a model to be within an error distance of
¢ to nearby model projections in order to be
recognizable. It has been found that distinguishing
between different types of interest points results in
a very efficient implementation of Geometric
Hashing, with a multi-dimensional hash table. The
filtering ratio of Geometric Hashing turned out to
be high enough to identify the correct solution(s),
with the correct point correspondences. The
algorithm was also rather successful in dealing
with occlusion, and performed at speeds in the
order of one second per basis on a SPARC station.

The Geometric Hashing approach, as any other
structural matching method, seems somewhat less
suited for applications with high noise levels and
for applications with loosely defined models. Hav-
ing an intensive preprocessing stage, Geometric
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Hashing places heavy memory demands which can
limit the number of models which fit in the data-
base. On the bright side, actual recognition is very
efficient and at high speeds. Together with the in-
herent high parallelism and the ability to deal con-
ceptually simple with occluded scenes, it makes
Geometric Hashing a promising model-based
recognition method for the future.
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