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A Multilevel Mixture-of-Experts Framework for
Pedestrian Classibcation

Markus Enzweiler and Dariu M. Gavrila

Abstract—Notwithstanding many years of progress, pedestrian
recognition is still a difficult but important problem. We present
a novel multilevel Mixture-of-Experts approach to combine in-
formation from multiple features and cues with the objective of
improved pedestrian classification. On pose-level, shape cues based
on Chamfer shape matching provide sample-dependent priors
for a certain pedestrian view. On modality-level, we represent
each data sample in terms of image intensity, (dense) depth, and
(dense) flow. On feature-level, we consider histograms of oriented
gradients (HOG) and local binary patterns (LBP). Multilayer
perceptrons (MLP) and linear support vector machines (linSVM)
are used as expert classifiers.

Experiments are performed on a unique real-world multi-
modality dataset captured from a moving vehicle in urban traffic.
This dataset has been made public for research purposes. Our
results show a significant performance boost of up to a factor of
42 in reduction of false positives at constant detection rates of our
approach compared to a baseline intensity-only HOG/linSVM
approach.

Index Terms—Mixture-of-experts, object detection, pedestrian
classification.

I. INTRODUCTION

tion and pattern classibcation. In recent years, a multitude of
(more or less) different feature sets has been used to discriminate
pedestrians from nonpedestrian images. Most of those features
operate on intensity contrasts in spatially restricted local parts of
an image. As such, they resemble neural structures which exist
in lower level processing stages of the human visual cortex [21].
In human perception, however, depth and motion are important
additional cues to support object recognition. In particular, the
motion RowpPeld and surface depth maps seem to be tightly inte-
grated with spatial cues, such as shape, contrasts, or color [27].

With a few exceptions (see Section Il), most spatial features
w

EDESTRIAN recognition is a key problem for a number
P of application domains, such as intelligent vehicles,
surveillance, and robotics. Notwithstanding years of method-

ical and technical progress, e.g., see [10], [16], and [20], it
is still a difpcult task from a machine-vision point of view.
There is a wide range of pedestrian appearance arising fro
changing articulated pose, clothing, lighting, andNin the ca
of a moving camera in a dynamic environmentNever-changi
backgrounds. Explicit models to solve the problem are n
readily available, so most research has focused on impli it

learning-based representations [25].

Many interesting pedestrian classibcation approaches h
been proposed; an overview is given in Section Il. Most aﬁg
proaches follow a two-step approach involving feature extrac-
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Pedestrian classibcation has attracted a signibcant amount of
mrperest from the research community over the past years. See

EO], [16], [20], and [23] for recent surveys and performance

udies. In this work, we focus on 2-D approaches which are
E itable for medium resolution pedestrian data (i.e., pedestrian
eight between 30 and 80 pixels). We do not consider more de-

(Iﬁiéed perception tasks such as human pose recovery or activity

cognition, e.g., [17], [34].

A pedestrian classiber is typically part of an integrated system
involving a preprocessing step to select initial object hypotheses
and a postprocessing step to integrate classibcation results over

Affe (tracking); see [10] and [20]. The classiber itself is the most

important module. Its performance accounts for the better part
of the overall system performance and the majority of compu-
tational resources is spent here.

Most approaches for pedestrian classibcation follow a dis-
criminative scheme by learning discriminative functions (de-
cision boundaries) to separate object classes within a feature
space. Prominent features can be roughly categorized into tex-
ture-based and gradient-based.

Nonadaptive texture-based Haar wavelet features have been
popularized by [41] and used by many others [35], [50], [56].
Recently, local binary pattern (LBP) features [39] have also been
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employed in pedestrian classibcation [53]. The particular strun-[52]. Some approaches combine features in the intensity do-
ture of local texture features has been optimized in terms of logakin using a boosted cascade classiber [58] or multiple kernel
receptive Peld (LRF) features [11], [19], [40], [55], which adagdearning [49]. One approach combines HOG, covariance, and
to the underlying data during training. Other texture-based feadgelet features in the intensity domain into a boosted heteroge-
tures are codebook patches, extracted around interest pointsans cascade classiber with an explicit optimization with re-
the image [1], [28], [45] and linked via geometric relations. gard to runtime [58]. Others integrate intensity and Row fea-
Gradient-based features have focused on discontinuitiestimes by boosting [51], [56] or by concatenating all features into
image brightness. Normalized local histograms of oriented grasingle feature vector which is then passed to a single classi-
dients have found wide use in both sparse (SIFT) [30] and derser [5], [51], [56]. The work in [51] was recently extended to
representations [histograms of oriented gradients (HOG)] [4dditionally include depth features [52]. A joint feature space
[9], [11], [32], [40], [51]P[53], [56], [59], [60]. Spatial variation approach to combine HOG and LBP features was used in [53].
and correlation of gradients have been encoded using cov§did] presents the integration of HOG features, co-occurrence
ance descriptors enhancing robustness towards brightness Vadtures and color frequency descriptors into a very high-di-
ations [48]. However, others have proposed local shape Plterensiona(~ 170 000 dimensiongoint feature space in which
exploiting characteristic patterns in the spatial conbguration dfssical machine learning approaches are intractable. Hence,
salient edges [33], [57]. partial least squares is applied to project the features into a sub-
Some of the presented spatial blters have been extended tasghece with lower dimensionality which facilitates robust classi-
spatio-temporal domain by means of intensity differences oveer learning. Boosting approaches require mapping the multi-
time [50], [55] or optical Bow [5]. dimensional features to a single dimension, either by applying
Regarding pattern classibers, support vector machim@®jections [58] or treating each dimension as an individual
(SVMs) have become very popular in the domain of pedestriéeature [56]. An alternative is the use of more complex weak
classibcation, in both linear [4], [5], [9], [11], [36], [51], [52], learners that operate in a multidimensional space, e.g., support
[56], [59], [60] and nonlinear variants [32], [35], [41]. Howeveryector machines, [60].
performance boosts resulting from the nonlinear model areln contrast, [5], [9], [40], and [43] utilize fusion on the clas-
paid for with a signibPcant increase in computational costs armiber level by training a specialized classiber for each cue. The
memory. Recent work presented efbcient versions of nonlineewrk in [5] and [9] use a single feature (HOG) in two (intensity
SVMs for a specibc class of kernels [32]. Other popular claand depth) and three different modalities (intensity, depth, and
sibers include neural networks [11], [19], [25], [36], [55] andnotion), respectively. The work in [40] involves a combination
boosted classibers [33], [48], [501D[52], [56], [57], [59], [60]. of two features (HOG and LRF) with a single modality (inten-
In the past years, many novel feature and classiber comdity). Finally, the work in [43] presents a classiber-level com-
nations were proposed to improve classibcation performanb@ation of two features, where each feature operates in a dif-
along with corresponding experimental studies and benderent modality (HOG/intensity and LRF/depth). Classiber fu-
marks, e.qg., [7], [10], [23], [36]. Orthogonal to such lower levesion is done using fuzzy integration [40], simple classiber com-
performance boosts are improvements coming from highgination rules [43], or a Mixture-of-Experts framework [5], [9],
level methods based on the fusion of multiple classibers.  [24]. Our work in [9], [11], and [43] provides the foundation for
Several approaches have attempted to break down the cahis paper.
plexity of the problem into subparts. One way is to represent
each sample as an ensemble of components which are usually 1. OVERVIEW AND CONTRIBUTIONS
related to body parts. After detecting the individual body parts, Our Mixture-of-Experts framework [24] for pedestrian clas-
detection results are fused using statistical models [15], [33]Pcation combines four modalities (shape, intensity, depth,
[57], learning or voting schemes [6], [9], [29], [35], [45], orand motion) and three features (Chamfer distance, HOG, and
heuristics [53]. LBP). We follow a multilevel approach by utilizing expert
Beside component-based approaches, multi-orientatidlassipers on pose, modality, and feature levels; see Fig. 1(a).
models are relevant to current work. Here, local pose-speciPloe local experts are integrated in terms of a probabilistic
clusters are established, followed by the training of specializpdse-specibPc model based on fuzzy view-related clustering and
classibers for each subspace. The Pnal decision of the class@sspciated sample-dependent cluster priéfsview-related
ensemble involves maximum selection [57], trajectory-baseabdels, specibc to fuzzy clusters,, are trained in an off-line
data association [59], shape-based combination [11], [19], osi@p to discriminate between pedestrians and nonpedestrians.
fusion classiber [46]. These models consist of sample-dependent cluster priors and
A recent trend in the community involves the combinatiomultilevel (multicue/multifeature) expert classibers. In the
of multiple features or modalities, e.g., intensity, depth. ar@hline application phase, cluster priors are computed using
motion. While some approaches utilize combinations on tilsdape matching and used to fuse the multilevel expert classi-
module level [2], [12], [13], [19], [37], [47], others integratebers to a combined decision; see Fig. 1(b). Details are given in
multiple information sources directly into the pattern classibc&ection V.
tion step [5], [9], [40], [43], [44], [49], [51]P[53], [56], [58]- The main contribution of this paper is the aforementioned
To the best of our knowledge, our work in [9] presented theose-specibc multilevel Mixture-of-Experts framework for
prst use of appearance, motion, and stereo features for pegesiestrian classibcation, which breaks down the complex clas-
trian classibcation. A similar approach was recently presentsitbcation problem into better manageable subproblems. To our
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Fig. 1. Framework overview. (a) Multilevel object representation comprising Mixture-of-Experts on pgsemodality, ., ,and feature levels ; . (b)
view-related models specibc to fuzzy clustersare used for pedestrian classibcation. The models consist of sample-dependent cluster priors and multicue/feature
discriminative experts which are learned from pedestrian (clagsnd nonpedestrian (class) samples .

knowledge, this work represents the brst integration of shapeactical terms) to the use of many tens of thousands of high-di-
intensity, depth and motion as features into a pattern classibognsional training samples, due to excessive memory require-
tion framework. We observed that the same pedestrians appaants, e.g., nonlinear SVMs [10] or even linear SVMs [4], [44].
with a different level of saliency in the gray-level intensityJn contrast, the local expert classibers in our framework are
depth, and motion images. This motivates our multimodalityained on a lower dimensional subspace alleviating memory re-
fusion approach, to benebt from the strengths of the individuglirements. As a result, more complex classibers and/or a larger
cues. Our multicue dataset has been made public for evaluatmnount of training samples can be used, which results in better
purposes, see Section V-A. performance.

In this paper, we are not concerned with establishing the bes® third issue is training time, which can be of the order
absolute performance given various state-of-the-art pedestriafi weeks on current hardware, particularly for boosting ap-
classibers. We refer the reader to recently proposed systemspnodiches, e.g., [10], [56], [58]. In our approach, training times
benchmark studies, e.g., [4], [7], [10], [20], [23], [48], [50], [52] are usually faster, given the lower dimensionality and inherent
[57], [60]. Rather, our aim is to demonstrate thkative perfor- parallelism of training multiple local experts independently at
mance gain resulting from the proposed multilevel approadhe same time. Note, that the expert classibers used in our ex-
exemplibed using state-of-the-art feature sets and classibergariments did not require more than one hour for each training
our experiments. The proposed framework is independentrah.
the actual feature sets and classibers used. The experiments Finally, since our expert classibers are independent from each
this paper are designed to stimulate further research and pother, they are not required to use exactly the same dataset for
vide an accessible baselineNwe use publicly available data atrdining. Given that most recently published datasets include
software implementations wherever possibleNto which the scsamples from the intensity domain only [7], [10], [36], our ap-
entiPc community can benchmark additional feature-classigepach could make maximum use of all available samples. For
combinations. evaluation purposes, we utilize the same data samples for each

Our approach has a number of advantages compared todue/feature in our experiments to eliminate effects arising from
sion approaches using a joint feature space, e.g., [44], [SBhbalanced data.

[56]. First, our individual expert classibers operate on a local This paper goes beyond our earlier work in [9], [11], and
lower-dimensional feature subspace and are less prone to oy48]. In [9], we focus on occlusion handling, whereas the main
ptting effects, given an adequate number of training samplesntribution of [11] is orientation estimation. In [43], we ad-
We do not need to apply dimensionality reduction techniquedress intensity and depth based pedestrian classibcation, but
e.g., [44], to robustly train our classibers. Compared to multifetake neither pose-specibc Mixture-of-Experts nor motion-based
ture boosting approaches, we also do not require techniques$datures into account.

map the multidimensional features to a single dimension, e.g.,The remainder of this paper is structured as follows. In
through projection [58] or selection of 1-D features [56]. Section 1V, our multilevel Mixture-of-Experts framework is

Second, our Mixture-of-Experts framework alleviates pradatroduced. Section V presents our dataset and experimental
tical problems arising from the use of large and high-dimesetup. In Section VI, we experimentally evaluate our approach,
sional datasets in pattern classibcation. Some authors repoftdidwed by a discussion in Section VII. We conclude in
that classical machine learning techniques do not scale up @ection VIII.
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B. Pedestrian Classibcation Plugging (5) and (6) into (4), we approximate , the
posterior probability that a given sample is a pedestrian, using
For pedestrian classibcation, our goal is to determine the class multilevel Mixture-of-Experts model as
label of a previously unseen sample. We make a Bayesian
decision and assign to the class with highest posterior prob-

ability
(7
2
(8)
We decompose , the posterior probability that a
given sample is a pedestrian, in terms of theslusters  as
9)
(3)
4)
and (10)
In this formulation, represents a sample-de-

pendent cluster membership prior for. We approximate
using a sample-dependent gating function
with and , as debned in (15),

in Section IV-D. o . .
. - itles, and features, we train classibers on
represents the cluster-specibc probability th . S .
the full training set  to discriminate between the pedestrian

a given sample is a pedestrian. Instead of explicitly com- 4 th destri | F h traini It
puting . we utilize an approximation given by a@nd the nonpedestrian class. For each training samplehe

set of discriminative models . The classiber outputs fuzzy cluster membership vector is used as a sample-depen-

can be seen as approximation of the cluster-specibc posteﬂgpt W?'ght during training. .
probabilities In principle, the proposed framework is independent from

the actual discriminative models used [10]. We only require ex-
ample-dependent weights during training and that the classiber
outputs (decision value) relate to an estimate of posterior proba-
bility. For neural networks, example-dependent weights are in-
. . _ . corporated using a weighted random sampling step to select the
Given aur pose-speciP¢ Mixiure-of-Experts formulation (429xamples that are presented to the neural network during each

we model the pase-speciPc expert classibers in termsv\)earning iteration. In case of support vector machines, the ap-

of our multimodality dataset (intensity, depth, and RBow). ﬁroach of [3] can be used. In the limit of inPnite data, the out-

extend the Mixture-of-Experts formulation by introducing "Mbuts of many state-of-the-art classibers can be converted to an
dividual classibers for each modality

estimate of posterior probabilities [25], [42]. We use this in our
experiments.

As expert classipers , we use pattern classibers which
are learned on the training set using data from the corresponding
modality/feature only. Given fuzzy pose clusters, modal-

C. Multimodality/Multifeature Expert Classibers

(®) We compute , the weights to the individual expert clas-
sibers, by interpreting [see (10)] as a
In this formulation, denotes a local expert classipefOt-productin the -dimensional space of expert classiber

for the th fuzzy pose cluster, which is represented in terms BPSterior probabilities. To determine the weights , we train

the th modality. represents a pose- and modality-depeﬁ‘-“”ear support vector machine (linSVM) in the expert pos-

dent weight. terior space. With the linSVM bias term constrained to be zero
Within each modality, we further introduce another level dit4]: its decision function equals a dot-product

expert classibers, in that multiple feature setge considered.

Following a similar Mixture-of-Experts principle, is
given by (11)
12)
(6)
Inserting (11) into (10) then yields
represents a pose-, modality-, and feature-specibc (13)

expert classiber with an associated weight .
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D. Sample-Dependent Cluster Priors by other authors using this data, it is unclear, to what extent
observed performance differences may result from different
algorithms used to compute depth and motion data. The authors
of [5], for example, demonstrated that the false positives at
_§3ual detection rate levels could be reduced by a factor of three,
simply by exchanging the method of optical Row estimation.
0|}40reover, the more sophisticated and visually better Row esti-
mator resulted in worse classibcation performance [5]. Further,
ge dataset of [13] lacks realism given our experimental setup
urban trafbc), since it has been captured at walking speeds on

urban sidewalks.

Our experiments involve the recently introducBaimler

(14) Multi-Cue, Occluded Pedestrian Classibcation Benchnf@rk

(we do not use the partially occluded pedestrians additionally

present in this dataset) which is publicly available to noncom-

Cluster conditional-likelihoods involve the repre- mercial entities for research purpogeghis dataset is captured
sentation of in terms of a set of features, followed by likeli-from a moving vehicle in complex urban trafbc. We provide
hood estimation. Possible cues include motion-based featurggy-level intensity data, as well as precomputed dense depth
i.e., optical Bow [5], or shape [19]. Likelihood estimation camaps and dense optical Row images, to eliminate any effects
be performed via histogramming on training data or btting pararising from differences in the computation of the latter.
metric models [19]. Recently, an independently developed approach combining
Here, we utilize shape cues to compute priors for intensity, motion, and depth was presented in [52]. However, the

the membership of a sample to a certain cluster : within  dataset used in [52] is only partly publicly available (the training
each cluster , adiscrete set of shape templates specibcto data is not public).
is matched to the sample. Shape matching involves correla- Performance evaluation of pedestrian classibers can be
tion of the shape templates with a distance-transformed versgggrformed using a per-image measure (detection context) or a
of . Let denote the residual shape distance betweger-window measure (classiPcation context). Dodiaal. [7]
the best matching shape in cluster and sample . By repre- consider the per-window evaluation for sliding-window detec-
senting interms of and using (14), sample-dependentors Rawed, since auxiliary effects, such as grid granularity or
shape-based priors for cluster are approximated as nonmaximum suppression, are not taken into account. They
mention as an additional pitfall the use of incorrectly cropped
samples which skews performance due to boundary artifacts.

Prior probabilities for membership to a certain clusterof
anunseen sample, ,areintroducedin (3). Note, that
this prior is not a bPxed prior, but depends on the sampitself.
As such, it represents the gating of the proposed Mixture
Experts architecture.

At this point, information from other cues besides texture (
which the discriminative models are based) can be incorpo-
rated into our framework in a probabilistic manner. We propo%
to model cluster priors using a Bayesian approach as

(15) We agree with Dollaet al.[7] that per-image evaluation should
be the preferred methodology for the evaluation of (monocular)
Priors are assumed equal and cluster-conditionals a?gdlng—wmdow or mterest—p_omt-based detectors .[10]' [23].
mages should be cropped in such a way to avoid boundary

modeled as exponential distributions of .
artifacts.

However, we do not consider the per-window evaluation
(16) measure as inherently Bawed. Both evaluation setups have

S _their justibcation, depending on the application context. Most
Parameters of the exponential distributions are learned Viga g1-world systems integrate several modules; they do not

maximum likelihood on the training set. follow a brute-force sliding-window detection scheme, but use
a preprocessing step to determine initial pedestrian location
V. EXPERIMENTAL SETUP hypotheses for both enhanced performance and computational
efbciency, e.g., using background subtraction [34], shape [12],

A. Dataset and Evaluation Methodology [19], stereo [13], [19], [37], motion [12], or nonvision sensors,

The proposed multilevel Mixture-of-Experts framework i$uch as radar or lidar [16]. As a r-esult, the remaini.ng object
tested in experiments on pedestrian classibcation. We choB¥gotheses are not random subwindows, but contain a mean-
the application of pedestrian classibcation in complex urbd#gful structure that resembles pedestrians in some aspect.
trafbc as an experimental testbed, since it is arguably onefgfrther, the number of hypotheses per image is greatly reduced
the most challenging problems around. Because we requif® to a factor of 10000) compared with dense subwindow
multicue (intensity, dense stereo, dense optical Bow) traini§§anNing, resulting in a more even ratio between pedestrian and
and test samples, we cannot use most established dataset83ppedestrian samples. In this application context, per-window
benchmarking, e.g., [4], [7], [10], [36]. The dataset introduceg@valuation should be the preferred method, since it more closely
by [13] includes appearance and binocular image data, howel@tembles the actual system setup.
actual depth maps and optical Bow are not provided by the Online]. Available: http://www.science.uva.nl/research/isla/down-
authors. While depth maps and Bow images can be compukeds/pedestrians/index.html
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TABLE | TABLE Il
TRAINING AND TEST SET STATISTICS EXPERTWEIGHTS "/ FORFEATURES AND MODALITIES, ESTIMATED BY A
LINEAR SVM ON THE TRAINING SET
Pedestrians | Pedestrians Non-
(labeled) (jittered) | Pedestrians Intensity | Depth | Motion
Training Set 6514 52112 32465 HOG 0.27 0.14 0.08
Test Set 3201 25608 16235 LBP 0.24 0.11 0.16

Our training and test samples consist of manually labelégrminology and method of [53] and compute L1-sqrt normal-
pedestrian and nonpedestrian bounding boxes in images dapd LB  features, using & 8 pixel cells and a maximum
tured from a vehicle-mounted calibrated stereo camera rig in @amber of 0B1 transitions of 2. The resulting feature dimension-
urban environment. For each manually labeled pedestrian, @iy is 1980 for HOG and 4248 for LBP. Note that the same
create additional samples by geometric jittering. Nonpedestrii®G and LBP feature set is extracted from intensity, dense
samples result from a pedestrian shape-detection preprocesstegeo and dense Bow images.
step [18] with a relaxed threshold setting (to not include largely For classibcation, we employ multilayer perceptrons (MLP)
uniform image patches, such as road surface or sky), as welld# one hidden layer consisting of eight neurons with sig-
ground-plane constraints and prior knowledge about pedestrfaidal transfer functions, trained stochastically using the
geometry, i.e., containing a bias towards more OdifbcultO geine error back-propagation algorithm. We utilize NN
terns, weakly resembling pedestrians in geometry and structdiierary for MLP training [38]. Compared with the popular
Note that this selection strategy has already been performedlfo6VMs, MLPs provide nonlinear decision boundaries which
both the provided training and test data, i.e., it is not requiréually improve performance, see [36]. The training of non-
to be implemented to reproduce and compare to the results gieear support vector machines was practically infeasible, given
sented in this paper. our large datasets.

Training and test samples have a resolution ok486 pixels Expert classiber weightg™ [see (10) and (11)] are com-
with a 12-pixel border around the pedestrians; there is no aftdted using the linear SVM approach given in Section IV-C,
pcial extension of the border (padding, mirroring) in our datapplied to the training set. We utilize thdBLINEAR library
Dense stereo is computed using the semi-global matching alé@-linear SVM training [14]. The actual weights for individual
rithm [22]. To compute dense optical Row, we use the methdeatures and modalities are listed in Table II.
of [54]. See Table | and Fig. 3 for an overview of the dataset. We reiterate that the proposed framework is independent from

We considek = view-related clusters ;, roughly corre- the actual feature set and discriminative models used. We en-
sponding to similarity in appearance to front, left, back and righpurage the scientibc community to present results of other fea-
views of pedestrians. We use the approximated cluster prigre-classiber combinations on our multicue data.
probability (see Section IV-D) as cluster membership weights

for training VI. EXPERIMENTS

) Our experiments are designed to evaluate the different levels
of our proposed Mixture-of-Experts framework [see Fig. 1(a)],

To computews(x; , a set of 10946 shape templates corrd0th in isolation and in combination, to quantify the contribu-
sponding to clusters ; is used according to the methogddion of the individual cues to the overall performance. After pre-

outlined in Section IV-D. senting the experimental results for pedestrian classibcation in
terms of ROC performance, we analyze the correlation of clas-
B. Feature Extraction and Classification siber outputs in different modalities/features to gain further in-

. : . sight into th .
Regarding features for our multicue classibers, we choosg € observed performance

histograms of oriented gradients (HOG) [4] and cell—structur% Pose-Level
local binary patterns (LBP) with uniformity constraints [39],
[53] out of many possible feature sets [7], [10], [36]. The In our Prst experiment, we evaluate the benept of our Mix-
motivation for this choice is twofold. First, HOG and LBPture-of-Experts architecture on pose-level only. For that, we
are complementary in the sense that HOGs are gradient-bagegipare the proposed pose-speciPc mixture architecture to
whereas LBPs are texture-based features. HOGs are sensfigle OmonolithicO classiPers trained on the whole dataset
to noisy background edges which often occur in cluttered badkiespective of view. We do not consider multimodality or
grounds. LBPs can blter out background noise using uniformitjultifeature classibers yet. For this experiment, we utilize
constraints, see [53]. Second, HOG and LBP features are PG and LBP features separately, operating in the intensity
among the best performing (and most popular) feature sémain only. Regarding classiPers, we compare linear support
available [7], [10], [53]. vector machines (linSVM) to multilayer perceptrons (MLPSs).
We follow [4] and compute histograms of oriented gradienf§ote that the monolithic HOG/linSVM approach corresponds
with nine orientation bins and 8 8 pixel cells, accumulated to to the method proposed by Dalal and Triggs [4]. Results are
overlapping 16< 16 pixel blocks with a spatial shift of eight shown in Fig. 4(a) for HOG and in Fig. 4(b) for LBP features.
pixels. HOG features are computed using the implementationlrrespective of the employed feature set, the pose-level mix-
provided by [4]. To compute cell-structured LBPs, we adopt thare classibers perform better than the corresponding monolithic

Mixture-of-Experts
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Fig. 4. Pose-level Mixture-of-Experts versus monolithic classiber. (a) HOG features in intensity modality. (b) LBP features in intensity. modality

Fig. 5. Modality-level Mixture-of-Experts. Individual classibcation performance of (a) HOG and (b) LBP features in intensity, depth, and nutztiioy. @om-
bined classibcation performance of (c) HOG and (d) LBP features in intensity, depth, and motion modality. Note the different scalingis.the

classibers. The decomposition of the problem into view-relat&d Modality-Level Mixture-of-Experts

subparts simplibes the training of the expert classibers, since

a large part of the observable variation in the samples is al-|n our second experiment, we evaluate the performance
ready accounted for. Classibcation performance and robustngssnodality-level classibers, as presented in Section IV-C,
is increased by a combined decision of the experts. The pesmpared with intensity-only classibers. Pose-level mixtures
formance benebpt for the pose-level mixture classiber is updfe also used, that is, the brst two levels of our framework
a factor of two in reduction of false positives at the same dfsee Fig. 1(a)] are in place in this experiment. Performance is
tection rate. Further, multilayer perceptrons outperform lineavaluated for both HOG and LBP features individually. In each
support vector machines, because of their nonlinearities in deature-space, we Prst evaluate all modalities separately and
cision space. Except for some experiments in Section VI-E, wecrementally add depth and motion to the baseline intensity
utilize pose-level Mixture-of-Experts classibcation throughoaue. Results are shown in Fig. 5(a) and (c) for HOG and in
the following experiments. Fig. 5(b) and (d) for LBP features.
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The relative performance of classibers trained on intensity, ; HOG+LBP - Intensity
depth and motion features only is consistent across the two
different feature spaces, cf. Fig. 5(a) (HOG) versus Fig. 5(b) 09l

O3

(LBP). Classipers in the intensity modality have the best per- ¢ : :
formance, by a large margin. In depth and motion modalities, % osff g/ : o s 1
performance is similar for both feature sets with depth features £ : ;
performing better then motion features at higher false positive § °7 : _
rates and worse at lower false positive rates. Note, that these e 06 ~ [—e— HOGIMLP MoE - Intensity
performance relations are also apparent in the individual expert ’ —#*— LBP/MLP MoE - Intensity .
classiPer weights; see Table II. - |~ HOSMLPHLBPIILP MoE - Intensily
Fig. 5(c) and (d) show the effect of incrementally adding ' s D G0as ooz 002
depth and motion to the intensity modality. Here, the best per- False Pasite Ral
formance is reached when all modalities are taken into account. @
However, the observable performance boosts are different for 1 HOG"LLB,P_ Depth
HOG compared with LBP features. The HOG classiber using
intensity, depth, and motion has approximately a factor of four 0.9
less false positives than a comparable HOG classiber using in- £
tensity only [see Fig. 5(c)]. From Fig. 5(d) we observe, that in né i
the case of LBP features, the performance boost resulting from 3 |
utilizing all modalities versus intensity-only is approximately 2 :
a factor of 12 in reduction of false positives at equal detection 06t .....| —©&—HOG/MLP MoE - Depth
—#— LBP/MLP MoE - Depth
rates. —8— HOG/MLP+LBP/MLP MoE - Depth
e 0.05 0.1 0.15 02
C. Feature-Level Mixture-of-Experts Faise Posifive Rats
Similar to analyzing the effect of modality-level Mix- ®)

ture-of-Experts , we now evaluate the effect of feature-level
Mixture-of-Experts. To that extent, we combine pose-level
Mixture-of-Experts with feature-level Mixture-of-Experts and 09l

HOG+LBP - Motion

evaluate the performance of the multifeature approach in all g

three modalities, i.e., intensity, depth, motion, individually. % o8 -
Recalling our framework architecture [see Fig. 1(a)], this £
corresponds to having levels 1 (pose) and 3 (features) in place. § 07 [/

Results are given in Fig. 6(a) (intensity), Fig. 6(b) (depth), and —6— HOG/MLP MoE - Motion

Fig. 6(c) (motion). 081 '| —— LBP/MLP MoE - Motion .
In all modalities, one can observe that combining HOG and o5 i T L BPARF Mok~ Moflor

LBP improves performance over using both features individu-

ally. The largest performance boost coming from the feature- False Positive Rate

level Mixture-of-Experts exists in the intensity modality. Here, ©

the combined HOG+LBP classiber has up to a factor of foaly. 6. Feature-level Mixture-of-Experts. Individual classibcation perfor-

less false positives than the HOG classiber, which in turn otpance of HOG, LBP, and HOG+LBP in (a) intensity, (b) depth, and (c) motion

performs the LBP classiber at higher detection rates. In defﬂﬁda“ty' Note the different scaling on theaxs.

and motion modalities, the corresponding performance boosts

amount to factors of 2 (motion) and 1.5 (depth) at equal de-. . . .

tection rate levels. Com(pared \3vith the pérforr)m;nce i(rq'nprO\/%I-'Xtur.e -of-Experts using HOG+LBP Mixture-of-Experts in

ment obtained by combining different modalities, as shown |ptensity domain only (see Section VI-C).

Section VI-B, the effect of feature-level Mixture-of-Experts i%_ Rac pletrlforn}?\?_c? IS glvfelr; n F'tg' 7. We obﬁerve_tgat ozrcortn-
less pronounced, but still signibcant. ined multilevel Mixture-of-Experts approach signibcantly out-

performs both variants using either modality-level or feature-
level fusion, as well as the state-of-the-art monolithic HOG/
linSVM approach [4]. To quantify performance, Table Ill lists
We now evaluate the performance of our full multilevethe false positive rates of all approaches shown in Fig. 7 using a
Mixture-of-Experts framework combining pose-, modality-detection rate of 90% as a common reference point. We further
and feature-level expert classibers. As baseline performanioglicate the resulting reduction in false positives, in comparison
the monolithic (i.e., no delineation of classibers at pose-levét) the monolithic HOG/IINSVM classiber as baseline.
HOG/IinSVM approach of [4], as well the best performing If we combine experts on pose-level with experts on feature-
variants from the previous two experiments are utilizedevel (HOG/MLP + LBP/MLP, intensity modality), we achieve
modality-level Mixture-of-Experts using LBP/MLP in inten-a reduction in false positive of more than a factor of 6 over the
sity, depth and motion (see Section VI-B) as well as feature-lev@alal and Triggs HOG/IinSVM approach. The use of pose-level

0.05 0.1 0.15 0.2

D. Multilevel Mixture-of-Experts
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Fig. 7. Performance overview. (a) Monolithic HOG classiber in intensity domain, best feature-level MoE (HOG+LBP, intensity), best modatyEH¢LEP,
intensity+depth+maotion), multilevel MoE (HOG+LBP, intensity+depth+motion). (b) Logarithmic plot of (a), focusing on low false-positive rates.

TABLE IIl E. Classifier Fusion
PERFORMANCE OFAPPROACHES INFIG. 7 USING 90% DETECTION RATE AS A i . i
COMMON REFERENCEPOINT In our Pnal experiments, we compare our multilevel Mix-

ture-of-Experts fusion approach to other techniques for clas-

FP Rate Factor H i H H H i
OGRSV ~ Tntensity [Dalal & Tiggs] e : siber .fu5|.on. F|r§t, we analy;e fus!on approaches mvolvmg a
FOG+LBP/MLP MOE - Tntensity T7e3 62 combination of different classibers in other ways than our Mix-
LBP/MLP MoE - Int.+Dep.+Mot. 8.2¢-4 13.4 ture-of-Experts framework. Second, we compare our approach
HOG+LBP/MLP MOE - Int.+Dep.+Mot. 2.6c-4 | 420 against a single classiber using a joint feature space which con-
sists of all features in all modalitids’-normalized and concate-
TABLE IV

nated into a single feature vector [56]. Given our feature setup
CORRELATION OF CLASSIFIER OUTPUTS IN(A) DIFFERENTMODALITIES AND . . . . . ..
(B) DIFFERENT FEATURES as presented in Section V-B, the total dimensionality of the joint
feature space is 18 684. For comparison, the performance of the
Dalal and Triggs HOG/linSVM baseline [4] is also given. Re-
sults are shown in Fig. 8(a) for the multiclassiber fusion and in
Fig. 8(b) for the joint space fusion approaches.
The multiclassiber fusion approaches (entitted OUniform
SumO, OProductO and OSugeno Fuzzy IntegralO) involve in-
dividual classipers for each feature (HOG and LBP) and
and modality-level experts (LBP/MLP, intensity+depth+motiomodality (intensity, depth and motion). Altogether, there are
modalities) reduces false positives by more than a factor of &% classibers to be combined, using the sum and product of the
compared with the HOG/IinSVM baseline. Our full multilevelindividual decision values [26], as well as a fuzzy integration
Mixture-of-Experts approach (HOG/MLP + LBP/MLP, inten-using Sugeno integrals [40]. Fuzzy integration involves treating
sity+depth+motion modalities) further boost performance up tbe individual classiber outputs as a fuzzy set and aggregating
a reduction in false positives by a factor of 42. them into a single value using the Sugeno integral. While
The results clearly show the benebt of our integratédose approaches improve performance over the state-of-the-art
multilevel architecture. Additionally, we observe that the conalal and Triggs HOG/IinSVM classiber [4], our multilevel
bination of different modalities attributes more to the overaMixture-of-Experts classiber has a much better performance.
performance, than the use of multiple features within a singldis clearly shows the benebt of gating on pose-level [see (4)]
modality. Given that most recent research has focused on ded the learned classibper combination weights in (12).
veloping yet another feature to be used in the intensity domain In terms of joint space approaches, we train both a MLP
multicue classibcation approaches seem to be a promisingatid a linSVM in the enlarged 18 684-dimensional joint feature
rection for future research in the domain of object classibcatispace (training a nonlinear SVM was not feasible given our
to boost overall performance. large dataset). While one could expect the MLP to improve
To gain further insight, we compute the correlation of classperformance over the linSVM, due to the nonlinear decision
per outputs (decision values) for the individual modality/featut@undary, our results paint a different performance picture. The
expert classibers, computed for pedestrian and nonpedesthHrP classiber is outperformed by the linSVM by a signibcant
samples individually and then averaged over the two classes, segin. We attribute this to the so-called Ocurse of dimension-
Table IV. The correlation analysis shows, that classiber outpatity,0 e.g., [8], which relates the number of free parameters
are far less correlated across different modalities (Table IV-B) a classiber (as given by feature space dimensionality) to
than across different features (Table IV-A). Here, the less corttbe amount of available training samples. As a rule of thumb,
lated two modalities/features are, the larger the benebts obtaitteglnumber of training samples should be a factor-of-10 larger
in classibcation performance (see Figs. 5 and 6). than the number of free parameters to be estimated during



