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A Multilevel Mixture-of-Experts Framework for
Pedestrian ClassiÞcation

Markus Enzweiler and Dariu M. Gavrila

Abstract—Notwithstanding many years of progress, pedestrian
recognition is still a difficult but important problem. We present
a novel multilevel Mixture-of-Experts approach to combine in-
formation from multiple features and cues with the objective of
improved pedestrian classification. On pose-level, shape cues based
on Chamfer shape matching provide sample-dependent priors
for a certain pedestrian view. On modality-level, we represent
each data sample in terms of image intensity, (dense) depth, and
(dense) flow. On feature-level, we consider histograms of oriented
gradients (HOG) and local binary patterns (LBP). Multilayer
perceptrons (MLP) and linear support vector machines (linSVM)
are used as expert classifiers.

Experiments are performed on a unique real-world multi-
modality dataset captured from a moving vehicle in urban traffic.
This dataset has been made public for research purposes. Our
results show a significant performance boost of up to a factor of
42 in reduction of false positives at constant detection rates of our
approach compared to a baseline intensity-only HOG/linSVM
approach.

Index Terms—Mixture-of-experts, object detection, pedestrian
classification.

I. INTRODUCTION

P EDESTRIAN recognition is a key problem for a number
of application domains, such as intelligent vehicles,

surveillance, and robotics. Notwithstanding years of method-
ical and technical progress, e.g., see [10], [16], and [20], it
is still a difÞcult task from a machine-vision point of view.
There is a wide range of pedestrian appearance arising from
changing articulated pose, clothing, lighting, andÑin the case
of a moving camera in a dynamic environmentÑever-changing
backgrounds. Explicit models to solve the problem are not
readily available, so most research has focused on implicit
learning-based representations [25].

Many interesting pedestrian classiÞcation approaches have
been proposed; an overview is given in Section II. Most ap-
proaches follow a two-step approach involving feature extrac-

Manuscript received October 12, 2010; revised February 03, 2011; accepted
at http://ieeexplore.ieee.org.

Digital Object IdentiÞer 10.1109/TIP.2011.2142006

tion and pattern classiÞcation. In recent years, a multitude of
(more or less) different feature sets has been used to discriminate
pedestrians from nonpedestrian images. Most of those features
operate on intensity contrasts in spatially restricted local parts of
an image. As such, they resemble neural structures which exist
in lower level processing stages of the human visual cortex [21].
In human perception, however, depth and motion are important
additional cues to support object recognition. In particular, the
motion ßowÞeld and surface depth maps seem to be tightly inte-
grated with spatial cues, such as shape, contrasts, or color [27].

With a few exceptions (see Section II), most spatial features
W

ORK

Pedestrian classiÞcation has attracted a signiÞcant amount of
interest from the research community over the past years. See
[10], [16], [20], and [23] for recent surveys and performance
studies. In this work, we focus on 2-D approaches which are
suitable for medium resolution pedestrian data (i.e., pedestrian
height between 30 and 80 pixels). We do not consider more de-
tailed perception tasks such as human pose recovery or activity
recognition, e.g., [17], [34].

A pedestrian classiÞer is typically part of an integrated system
involving a preprocessing step to select initial object hypotheses
and a postprocessing step to integrate classiÞcation results over
time (tracking); see [10] and [20]. The classiÞer itself is the most
important module. Its performance accounts for the better part
of the overall system performance and the majority of compu-
tational resources is spent here.

Most approaches for pedestrian classiÞcation follow a dis-
criminative scheme by learning discriminative functions (de-
cision boundaries) to separate object classes within a feature
space. Prominent features can be roughly categorized into tex-
ture-based and gradient-based.

Nonadaptive texture-based Haar wavelet features have been
popularized by [41] and used by many others [35], [50], [56].
Recently, local binary pattern (LBP) features [39] have also been
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employed in pedestrian classiÞcation [53]. The particular struc-
ture of local texture features has been optimized in terms of local
receptive Þeld (LRF) features [11], [19], [40], [55], which adapt
to the underlying data during training. Other texture-based fea-
tures are codebook patches, extracted around interest points in
the image [1], [28], [45] and linked via geometric relations.

Gradient-based features have focused on discontinuities in
image brightness. Normalized local histograms of oriented gra-
dients have found wide use in both sparse (SIFT) [30] and dense
representations [histograms of oriented gradients (HOG)] [4],
[9], [11], [32], [40], [51]Ð[53], [56], [59], [60]. Spatial variation
and correlation of gradients have been encoded using covari-
ance descriptors enhancing robustness towards brightness vari-
ations [48]. However, others have proposed local shape Þlters
exploiting characteristic patterns in the spatial conÞguration of
salient edges [33], [57].

Some of the presented spatial Þlters have been extended to the
spatio-temporal domain by means of intensity differences over
time [50], [55] or optical ßow [5].

Regarding pattern classiÞers, support vector machines
(SVMs) have become very popular in the domain of pedestrian
classiÞcation, in both linear [4], [5], [9], [11], [36], [51], [52],
[56], [59], [60] and nonlinear variants [32], [35], [41]. However,
performance boosts resulting from the nonlinear model are
paid for with a signiÞcant increase in computational costs and
memory. Recent work presented efÞcient versions of nonlinear
SVMs for a speciÞc class of kernels [32]. Other popular clas-
siÞers include neural networks [11], [19], [25], [36], [55] and
boosted classiÞers [33], [48], [50]Ð[52], [56], [57], [59], [60].

In the past years, many novel feature and classiÞer combi-
nations were proposed to improve classiÞcation performance,
along with corresponding experimental studies and bench-
marks, e.g., [7], [10], [23], [36]. Orthogonal to such lower level
performance boosts are improvements coming from higher
level methods based on the fusion of multiple classiÞers.

Several approaches have attempted to break down the com-
plexity of the problem into subparts. One way is to represent
each sample as an ensemble of components which are usually
related to body parts. After detecting the individual body parts,
detection results are fused using statistical models [15], [33],
[57], learning or voting schemes [6], [9], [29], [35], [45], or
heuristics [53].

Beside component-based approaches, multi-orientation
models are relevant to current work. Here, local pose-speciÞc
clusters are established, followed by the training of specialized
classiÞers for each subspace. The Þnal decision of the classiÞer
ensemble involves maximum selection [57], trajectory-based
data association [59], shape-based combination [11], [19], or a
fusion classiÞer [46].

A recent trend in the community involves the combination
of multiple features or modalities, e.g., intensity, depth. and
motion. While some approaches utilize combinations on the
module level [2], [12], [13], [19], [37], [47], others integrate
multiple information sources directly into the pattern classiÞca-
tion step [5], [9], [40], [43], [44], [49], [51]Ð[53], [56], [58].

To the best of our knowledge, our work in [9] presented the
Þrst use of appearance, motion, and stereo features for pedes-
trian classiÞcation. A similar approach was recently presented

in [52]. Some approaches combine features in the intensity do-
main using a boosted cascade classiÞer [58] or multiple kernel
learning [49]. One approach combines HOG, covariance, and
edgelet features in the intensity domain into a boosted heteroge-
nous cascade classiÞer with an explicit optimization with re-
gard to runtime [58]. Others integrate intensity and ßow fea-
tures by boosting [51], [56] or by concatenating all features into
a single feature vector which is then passed to a single classi-
Þer [5], [51], [56]. The work in [51] was recently extended to
additionally include depth features [52]. A joint feature space
approach to combine HOG and LBP features was used in [53].
[44] presents the integration of HOG features, co-occurrence
features and color frequency descriptors into a very high-di-
mensional 170 000 dimensionsjoint feature space in which
classical machine learning approaches are intractable. Hence,
partial least squares is applied to project the features into a sub-
space with lower dimensionality which facilitates robust classi-
Þer learning. Boosting approaches require mapping the multi-
dimensional features to a single dimension, either by applying
projections [58] or treating each dimension as an individual
feature [56]. An alternative is the use of more complex weak
learners that operate in a multidimensional space, e.g., support
vector machines, [60].

In contrast, [5], [9], [40], and [43] utilize fusion on the clas-
siÞer level by training a specialized classiÞer for each cue. The
work in [5] and [9] use a single feature (HOG) in two (intensity
and depth) and three different modalities (intensity, depth, and
motion), respectively. The work in [40] involves a combination
of two features (HOG and LRF) with a single modality (inten-
sity). Finally, the work in [43] presents a classiÞer-level com-
bination of two features, where each feature operates in a dif-
ferent modality (HOG/intensity and LRF/depth). ClassiÞer fu-
sion is done using fuzzy integration [40], simple classiÞer com-
bination rules [43], or a Mixture-of-Experts framework [5], [9],
[24]. Our work in [9], [11], and [43] provides the foundation for
this paper.

III. OVERVIEW AND CONTRIBUTIONS

Our Mixture-of-Experts framework [24] for pedestrian clas-
siÞcation combines four modalities (shape, intensity, depth,
and motion) and three features (Chamfer distance, HOG, and
LBP). We follow a multilevel approach by utilizing expert
classiÞers on pose, modality, and feature levels; see Fig. 1(a).
The local experts are integrated in terms of a probabilistic
pose-speciÞc model based on fuzzy view-related clustering and
associated sample-dependent cluster priors.view-related
models, speciÞc to fuzzy clusters , are trained in an off-line
step to discriminate between pedestrians and nonpedestrians.
These models consist of sample-dependent cluster priors and
multilevel (multicue/multifeature) expert classiÞers. In the
online application phase, cluster priors are computed using
shape matching and used to fuse the multilevel expert classi-
Þers to a combined decision; see Fig. 1(b). Details are given in
Section IV.

The main contribution of this paper is the aforementioned
pose-speciÞc multilevel Mixture-of-Experts framework for
pedestrian classiÞcation, which breaks down the complex clas-
siÞcation problem into better manageable subproblems. To our
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Fig. 1. Framework overview. (a) Multilevel object representation comprising Mixture-of-Experts on pose,�� � , modality,�� � , and feature levels�� � . (b)�
view-related models speciÞc to fuzzy clusters� are used for pedestrian classiÞcation. The models consist of sample-dependent cluster priors and multicue/feature
discriminative experts which are learned from pedestrian (class� ) and nonpedestrian (class� ) samples�.

knowledge, this work represents the Þrst integration of shape,
intensity, depth and motion as features into a pattern classiÞca-
tion framework. We observed that the same pedestrians appear
with a different level of saliency in the gray-level intensity,
depth, and motion images. This motivates our multimodality
fusion approach, to beneÞt from the strengths of the individual
cues. Our multicue dataset has been made public for evaluation
purposes, see Section V-A.

In this paper, we are not concerned with establishing the best
absolute performance given various state-of-the-art pedestrian
classiÞers. We refer the reader to recently proposed systems and
benchmark studies, e.g., [4], [7], [10], [20], [23], [48], [50], [52],
[57], [60]. Rather, our aim is to demonstrate therelative perfor-
mance gain resulting from the proposed multilevel approach,
exempliÞed using state-of-the-art feature sets and classiÞers in
our experiments. The proposed framework is independent of
the actual feature sets and classiÞers used. The experiments in
this paper are designed to stimulate further research and pro-
vide an accessible baselineÑwe use publicly available data and
software implementations wherever possibleÑto which the sci-
entiÞc community can benchmark additional feature-classiÞer
combinations.

Our approach has a number of advantages compared to fu-
sion approaches using a joint feature space, e.g., [44], [53],
[56]. First, our individual expert classiÞers operate on a local
lower-dimensional feature subspace and are less prone to over-
Þtting effects, given an adequate number of training samples.
We do not need to apply dimensionality reduction techniques,
e.g., [44], to robustly train our classiÞers. Compared to multifea-
ture boosting approaches, we also do not require techniques to
map the multidimensional features to a single dimension, e.g.,
through projection [58] or selection of 1-D features [56].

Second, our Mixture-of-Experts framework alleviates prac-
tical problems arising from the use of large and high-dimen-
sional datasets in pattern classiÞcation. Some authors reported
that classical machine learning techniques do not scale up (on

practical terms) to the use of many tens of thousands of high-di-
mensional training samples, due to excessive memory require-
ments, e.g., nonlinear SVMs [10] or even linear SVMs [4], [44].
In contrast, the local expert classiÞers in our framework are
trained on a lower dimensional subspace alleviating memory re-
quirements. As a result, more complex classiÞers and/or a larger
amount of training samples can be used, which results in better
performance.

A third issue is training time, which can be of the order
of weeks on current hardware, particularly for boosting ap-
proaches, e.g., [10], [56], [58]. In our approach, training times
are usually faster, given the lower dimensionality and inherent
parallelism of training multiple local experts independently at
the same time. Note, that the expert classiÞers used in our ex-
periments did not require more than one hour for each training
run.

Finally, since our expert classiÞers are independent from each
other, they are not required to use exactly the same dataset for
training. Given that most recently published datasets include
samples from the intensity domain only [7], [10], [36], our ap-
proach could make maximum use of all available samples. For
evaluation purposes, we utilize the same data samples for each
cue/feature in our experiments to eliminate effects arising from
imbalanced data.

This paper goes beyond our earlier work in [9], [11], and
[43]. In [9], we focus on occlusion handling, whereas the main
contribution of [11] is orientation estimation. In [43], we ad-
dress intensity and depth based pedestrian classiÞcation, but
take neither pose-speciÞc Mixture-of-Experts nor motion-based
features into account.

The remainder of this paper is structured as follows. In
Section IV, our multilevel Mixture-of-Experts framework is
introduced. Section V presents our dataset and experimental
setup. In Section VI, we experimentally evaluate our approach,
followed by a discussion in Section VII. We conclude in
Section VIII.
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B. Pedestrian ClassiÞcation

For pedestrian classiÞcation, our goal is to determine the class
label of a previously unseen sample. We make a Bayesian
decision and assign to the class with highest posterior prob-
ability

(2)

We decompose , the posterior probability that a
given sample is a pedestrian, in terms of theclusters as

(3)

(4)

In this formulation, represents a sample-de-
pendent cluster membership prior for . We approximate

using a sample-dependent gating function ,
with and , as deÞned in (15),
in Section IV-D.

represents the cluster-speciÞc probability that
a given sample is a pedestrian. Instead of explicitly com-
puting , we utilize an approximation given by a
set of discriminative models . The classiÞer outputs
can be seen as approximation of the cluster-speciÞc posterior
probabilities .

C. Multimodality/Multifeature Expert ClassiÞers

Given our pose-speciÞc Mixture-of-Experts formulation (4),
we model the pose-speciÞc expert classiÞers in terms
of our multimodality dataset (intensity, depth, and ßow). We
extend the Mixture-of-Experts formulation by introducing in-
dividual classiÞers for each modality

(5)

In this formulation, denotes a local expert classiÞer
for the th fuzzy pose cluster, which is represented in terms of
the th modality. represents a pose- and modality-depen-
dent weight.

Within each modality, we further introduce another level of
expert classiÞers, in that multiple feature setsare considered.
Following a similar Mixture-of-Experts principle, is
given by

(6)

represents a pose-, modality-, and feature-speciÞc
expert classiÞer with an associated weight .

Plugging (5) and (6) into (4), we approximate , the
posterior probability that a given sample is a pedestrian, using
our multilevel Mixture-of-Experts model as

(7)

(8)

(9)

and (10)

As expert classiÞers , we use pattern classiÞers which
are learned on the training set using data from the corresponding
modality/feature only. Given fuzzy pose clusters, modal-
ities, and features, we train classiÞers on
the full training set to discriminate between the pedestrian
and the nonpedestrian class. For each training sample, the
fuzzy cluster membership vector is used as a sample-depen-
dent weight during training.

In principle, the proposed framework is independent from
the actual discriminative models used [10]. We only require ex-
ample-dependent weights during training and that the classiÞer
outputs (decision value) relate to an estimate of posterior proba-
bility. For neural networks, example-dependent weights are in-
corporated using a weighted random sampling step to select the
examples that are presented to the neural network during each
learning iteration. In case of support vector machines, the ap-
proach of [3] can be used. In the limit of inÞnite data, the out-
puts of many state-of-the-art classiÞers can be converted to an
estimate of posterior probabilities [25], [42]. We use this in our
experiments.

We compute , the weights to the individual expert clas-
siÞers, by interpreting [see (10)] as a
dot-product in the -dimensional space of expert classiÞer
posterior probabilities. To determine the weights , we train
a linear support vector machine (linSVM) in the expert pos-
terior space. With the linSVM bias term constrained to be zero
[14], its decision function equals a dot-product

(11)

(12)

Inserting (11) into (10) then yields

(13)
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D. Sample-Dependent Cluster Priors

Prior probabilities for membership to a certain clusterof
an unseen sample, , are introduced in (3). Note, that
this prior is not a Þxed prior, but depends on the sampleitself.
As such, it represents the gating of the proposed Mixture-of-
Experts architecture.

At this point, information from other cues besides texture (on
which the discriminative models are based) can be incorpo-
rated into our framework in a probabilistic manner. We propose
to model cluster priors using a Bayesian approach as

(14)

Cluster conditional-likelihoods involve the repre-
sentation of in terms of a set of features, followed by likeli-
hood estimation. Possible cues include motion-based features,
i.e., optical ßow [5], or shape [19]. Likelihood estimation can
be performed via histogramming on training data or Þtting para-
metric models [19].

Here, we utilize shape cues to compute priors for
the membership of a sample to a certain cluster : within
each cluster , a discrete set of shape templates speciÞc to
is matched to the sample. Shape matching involves correla-
tion of the shape templates with a distance-transformed version
of . Let denote the residual shape distance between
the best matching shape in cluster and sample . By repre-
senting in terms of and using (14), sample-dependent
shape-based priors for cluster are approximated as

(15)

Priors are assumed equal and cluster-conditionals are
modeled as exponential distributions of

(16)

Parameters of the exponential distributions are learned via
maximum likelihood on the training set.

V. EXPERIMENTAL SETUP

A. Dataset and Evaluation Methodology

The proposed multilevel Mixture-of-Experts framework is
tested in experiments on pedestrian classiÞcation. We choose
the application of pedestrian classiÞcation in complex urban
trafÞc as an experimental testbed, since it is arguably one of
the most challenging problems around. Because we require
multicue (intensity, dense stereo, dense optical ßow) training
and test samples, we cannot use most established datasets for
benchmarking, e.g., [4], [7], [10], [36]. The dataset introduced
by [13] includes appearance and binocular image data, however
actual depth maps and optical ßow are not provided by the
authors. While depth maps and ßow images can be computed

by other authors using this data, it is unclear, to what extent
observed performance differences may result from different
algorithms used to compute depth and motion data. The authors
of [5], for example, demonstrated that the false positives at
equal detection rate levels could be reduced by a factor of three,
simply by exchanging the method of optical ßow estimation.
Moreover, the more sophisticated and visually better ßow esti-
mator resulted in worse classiÞcation performance [5]. Further,
the dataset of [13] lacks realism given our experimental setup
(urban trafÞc), since it has been captured at walking speeds on
urban sidewalks.

Our experiments involve the recently introducedDaimler
Multi-Cue, Occluded Pedestrian ClassiÞcation Benchmark[9]
(we do not use the partially occluded pedestrians additionally
present in this dataset) which is publicly available to noncom-
mercial entities for research purposes.1 This dataset is captured
from a moving vehicle in complex urban trafÞc. We provide
gray-level intensity data, as well as precomputed dense depth
maps and dense optical ßow images, to eliminate any effects
arising from differences in the computation of the latter.

Recently, an independently developed approach combining
intensity, motion, and depth was presented in [52]. However, the
dataset used in [52] is only partly publicly available (the training
data is not public).

Performance evaluation of pedestrian classiÞers can be
performed using a per-image measure (detection context) or a
per-window measure (classiÞcation context). Dollaret al. [7]
consider the per-window evaluation for sliding-window detec-
tors ßawed, since auxiliary effects, such as grid granularity or
nonmaximum suppression, are not taken into account. They
mention as an additional pitfall the use of incorrectly cropped
samples which skews performance due to boundary artifacts.
We agree with Dollaret al.[7] that per-image evaluation should
be the preferred methodology for the evaluation of (monocular)
sliding-window or interest-point-based detectors [10], [23].
Images should be cropped in such a way to avoid boundary
artifacts.

However, we do not consider the per-window evaluation
measure as inherently ßawed. Both evaluation setups have
their justiÞcation, depending on the application context. Most
real-world systems integrate several modules; they do not
follow a brute-force sliding-window detection scheme, but use
a preprocessing step to determine initial pedestrian location
hypotheses for both enhanced performance and computational
efÞciency, e.g., using background subtraction [34], shape [12],
[19], stereo [13], [19], [37], motion [12], or nonvision sensors,
such as radar or lidar [16]. As a result, the remaining object
hypotheses are not random subwindows, but contain a mean-
ingful structure that resembles pedestrians in some aspect.
Further, the number of hypotheses per image is greatly reduced
(up to a factor of 10 000) compared with dense subwindow
scanning, resulting in a more even ratio between pedestrian and
nonpedestrian samples. In this application context, per-window
evaluation should be the preferred method, since it more closely
resembles the actual system setup.

1[Online]. Available: http://www.science.uva.nl/research/isla/down-
loads/pedestrians/index.html
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TABLE I
TRAINING AND TEST SET STATISTICS

Our training and test samples consist of manually labeled
pedestrian and nonpedestrian bounding boxes in images cap-
tured from a vehicle-mounted calibrated stereo camera rig in an
urban environment. For each manually labeled pedestrian, we
create additional samples by geometric jittering. Nonpedestrian
samples result from a pedestrian shape-detection preprocessing
step [18] with a relaxed threshold setting (to not include largely
uniform image patches, such as road surface or sky), as well as
ground-plane constraints and prior knowledge about pedestrian
geometry, i.e., containing a bias towards more ÓdifÞcultÓ pat-
terns, weakly resembling pedestrians in geometry and structure.
Note that this selection strategy has already been performed for
both the provided training and test data, i.e., it is not required
to be implemented to reproduce and compare to the results pre-
sented in this paper.

Training and test samples have a resolution of 4896 pixels
with a 12-pixel border around the pedestrians; there is no arti-
Þcial extension of the border (padding, mirroring) in our data.
Dense stereo is computed using the semi-global matching algo-
rithm [22]. To compute dense optical ßow, we use the method
of [54]. See Table I and Fig. 3 for an overview of the dataset.

We consider view-related clusters , roughly corre-
sponding to similarity in appearance to front, left, back and right
views of pedestrians. We use the approximated cluster prior
probability (see Section IV-D) as cluster membership weights
for training

(17)

To compute , a set of 10 946 shape templates corre-
sponding to clusters is used according to the methods
outlined in Section IV-D.

B. Feature Extraction and Classification

Regarding features for our multicue classiÞers, we choose
histograms of oriented gradients (HOG) [4] and cell-structured
local binary patterns (LBP) with uniformity constraints [39],
[53] out of many possible feature sets [7], [10], [36]. The
motivation for this choice is twofold. First, HOG and LBP
are complementary in the sense that HOGs are gradient-based
whereas LBPs are texture-based features. HOGs are sensitive
to noisy background edges which often occur in cluttered back-
grounds. LBPs can Þlter out background noise using uniformity
constraints, see [53]. Second, HOG and LBP features are still
among the best performing (and most popular) feature sets
available [7], [10], [53].

We follow [4] and compute histograms of oriented gradients
with nine orientation bins and 8 8 pixel cells, accumulated to
overlapping 16 16 pixel blocks with a spatial shift of eight
pixels. HOG features are computed using the implementation
provided by [4]. To compute cell-structured LBPs, we adopt the

TABLE II
EXPERT WEIGHTS � FOR FEATURES AND MODALITIES, ESTIMATED BY A

LINEAR SVM ON THE TRAINING SET

terminology and method of [53] and compute L1-sqrt normal-
ized features, using 8 8 pixel cells and a maximum
number of 0Ð1 transitions of 2. The resulting feature dimension-
ality is 1980 for HOG and 4248 for LBP. Note that the same
HOG and LBP feature set is extracted from intensity, dense
stereo and dense ßow images.

For classiÞcation, we employ multilayer perceptrons (MLP)
with one hidden layer consisting of eight neurons with sig-
moidal transfer functions, trained stochastically using the
online error back-propagation algorithm. We utilize theFANN
library for MLP training [38]. Compared with the popular
linSVMs, MLPs provide nonlinear decision boundaries which
usually improve performance, see [36]. The training of non-
linear support vector machines was practically infeasible, given
our large datasets.

Expert classiÞer weights [see (10) and (11)] are com-
puted using the linear SVM approach given in Section IV-C,
applied to the training set. We utilize theLIBLINEAR library
for linear SVM training [14]. The actual weights for individual
features and modalities are listed in Table II.

We reiterate that the proposed framework is independent from
the actual feature set and discriminative models used. We en-
courage the scientiÞc community to present results of other fea-
ture-classiÞer combinations on our multicue data.

VI. EXPERIMENTS

Our experiments are designed to evaluate the different levels
of our proposed Mixture-of-Experts framework [see Fig. 1(a)],
both in isolation and in combination, to quantify the contribu-
tion of the individual cues to the overall performance. After pre-
senting the experimental results for pedestrian classiÞcation in
terms of ROC performance, we analyze the correlation of clas-
siÞer outputs in different modalities/features to gain further in-
sight into the observed performance.

A. Pose-Level Mixture-of-Experts

In our Þrst experiment, we evaluate the beneÞt of our Mix-
ture-of-Experts architecture on pose-level only. For that, we
compare the proposed pose-speciÞc mixture architecture to
single ÒmonolithicÓ classiÞers trained on the whole dataset
irrespective of view. We do not consider multimodality or
multifeature classiÞers yet. For this experiment, we utilize
HOG and LBP features separately, operating in the intensity
domain only. Regarding classiÞers, we compare linear support
vector machines (linSVM) to multilayer perceptrons (MLPs).
Note that the monolithic HOG/linSVM approach corresponds
to the method proposed by Dalal and Triggs [4]. Results are
shown in Fig. 4(a) for HOG and in Fig. 4(b) for LBP features.

Irrespective of the employed feature set, the pose-level mix-
ture classiÞers perform better than the corresponding monolithic
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Fig. 4. Pose-level Mixture-of-Experts versus monolithic classiÞer. (a) HOG features in intensity modality. (b) LBP features in intensity modality.

Fig. 5. Modality-level Mixture-of-Experts. Individual classiÞcation performance of (a) HOG and (b) LBP features in intensity, depth, and motion modality. Com-
bined classiÞcation performance of (c) HOG and (d) LBP features in intensity, depth, and motion modality. Note the different scaling on the� -axis.

classiÞers. The decomposition of the problem into view-related
subparts simpliÞes the training of the expert classiÞers, since
a large part of the observable variation in the samples is al-
ready accounted for. ClassiÞcation performance and robustness
is increased by a combined decision of the experts. The per-
formance beneÞt for the pose-level mixture classiÞer is up to
a factor of two in reduction of false positives at the same de-
tection rate. Further, multilayer perceptrons outperform linear
support vector machines, because of their nonlinearities in de-
cision space. Except for some experiments in Section VI-E, we
utilize pose-level Mixture-of-Experts classiÞcation throughout
the following experiments.

B. Modality-Level Mixture-of-Experts

In our second experiment, we evaluate the performance
of modality-level classiÞers, as presented in Section IV-C,
compared with intensity-only classiÞers. Pose-level mixtures
are also used, that is, the Þrst two levels of our framework
[see Fig. 1(a)] are in place in this experiment. Performance is
evaluated for both HOG and LBP features individually. In each
feature-space, we Þrst evaluate all modalities separately and
incrementally add depth and motion to the baseline intensity
cue. Results are shown in Fig. 5(a) and (c) for HOG and in
Fig. 5(b) and (d) for LBP features.
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The relative performance of classiÞers trained on intensity,
depth and motion features only is consistent across the two
different feature spaces, cf. Fig. 5(a) (HOG) versus Fig. 5(b)
(LBP). ClassiÞers in the intensity modality have the best per-
formance, by a large margin. In depth and motion modalities,
performance is similar for both feature sets with depth features
performing better then motion features at higher false positive
rates and worse at lower false positive rates. Note, that these
performance relations are also apparent in the individual expert
classiÞer weights; see Table II.

Fig. 5(c) and (d) show the effect of incrementally adding
depth and motion to the intensity modality. Here, the best per-
formance is reached when all modalities are taken into account.
However, the observable performance boosts are different for
HOG compared with LBP features. The HOG classiÞer using
intensity, depth, and motion has approximately a factor of four
less false positives than a comparable HOG classiÞer using in-
tensity only [see Fig. 5(c)]. From Fig. 5(d) we observe, that in
the case of LBP features, the performance boost resulting from
utilizing all modalities versus intensity-only is approximately
a factor of 12 in reduction of false positives at equal detection
rates.

C. Feature-Level Mixture-of-Experts

Similar to analyzing the effect of modality-level Mix-
ture-of-Experts , we now evaluate the effect of feature-level
Mixture-of-Experts. To that extent, we combine pose-level
Mixture-of-Experts with feature-level Mixture-of-Experts and
evaluate the performance of the multifeature approach in all
three modalities, i.e., intensity, depth, motion, individually.
Recalling our framework architecture [see Fig. 1(a)], this
corresponds to having levels 1 (pose) and 3 (features) in place.
Results are given in Fig. 6(a) (intensity), Fig. 6(b) (depth), and
Fig. 6(c) (motion).

In all modalities, one can observe that combining HOG and
LBP improves performance over using both features individu-
ally. The largest performance boost coming from the feature-
level Mixture-of-Experts exists in the intensity modality. Here,
the combined HOG+LBP classiÞer has up to a factor of four
less false positives than the HOG classiÞer, which in turn out-
performs the LBP classiÞer at higher detection rates. In depth
and motion modalities, the corresponding performance boosts
amount to factors of 2 (motion) and 1.5 (depth) at equal de-
tection rate levels. Compared with the performance improve-
ment obtained by combining different modalities, as shown in
Section VI-B, the effect of feature-level Mixture-of-Experts is
less pronounced, but still signiÞcant.

D. Multilevel Mixture-of-Experts

We now evaluate the performance of our full multilevel
Mixture-of-Experts framework combining pose-, modality-,
and feature-level expert classiÞers. As baseline performance,
the monolithic (i.e., no delineation of classiÞers at pose-level)
HOG/linSVM approach of [4], as well the best performing
variants from the previous two experiments are utilized:
modality-level Mixture-of-Experts using LBP/MLP in inten-
sity, depth and motion (see Section VI-B) as well as feature-level

Fig. 6. Feature-level Mixture-of-Experts. Individual classiÞcation perfor-
mance of HOG, LBP, and HOG+LBP in (a) intensity, (b) depth, and (c) motion
modality. Note the different scaling on the�-axis.

Mixture-of-Experts using HOG+LBP Mixture-of-Experts in
intensity domain only (see Section VI-C).

ROC performance is given in Fig. 7. We observe that our com-
bined multilevel Mixture-of-Experts approach signiÞcantly out-
performs both variants using either modality-level or feature-
level fusion, as well as the state-of-the-art monolithic HOG/
linSVM approach [4]. To quantify performance, Table III lists
the false positive rates of all approaches shown in Fig. 7 using a
detection rate of 90% as a common reference point. We further
indicate the resulting reduction in false positives, in comparison
to the monolithic HOG/linSVM classiÞer as baseline.

If we combine experts on pose-level with experts on feature-
level (HOG/MLP + LBP/MLP, intensity modality), we achieve
a reduction in false positive of more than a factor of 6 over the
Dalal and Triggs HOG/linSVM approach. The use of pose-level
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Fig. 7. Performance overview. (a) Monolithic HOG classiÞer in intensity domain, best feature-level MoE (HOG+LBP, intensity), best modality-levelMoE (LBP,
intensity+depth+motion), multilevel MoE (HOG+LBP, intensity+depth+motion). (b) Logarithmic plot of (a), focusing on low false-positive rates.

TABLE III
PERFORMANCE OFAPPROACHES INFIG. 7 USING 90% DETECTION RATE AS A

COMMON REFERENCEPOINT

TABLE IV
CORRELATION OFCLASSIFIER OUTPUTS IN (A) DIFFERENTMODALITIES AND

(B) DIFFERENTFEATURES

and modality-level experts (LBP/MLP, intensity+depth+motion
modalities) reduces false positives by more than a factor of 13
compared with the HOG/linSVM baseline. Our full multilevel
Mixture-of-Experts approach (HOG/MLP + LBP/MLP, inten-
sity+depth+motion modalities) further boost performance up to
a reduction in false positives by a factor of 42.

The results clearly show the beneÞt of our integrated
multilevel architecture. Additionally, we observe that the com-
bination of different modalities attributes more to the overall
performance, than the use of multiple features within a single
modality. Given that most recent research has focused on de-
veloping yet another feature to be used in the intensity domain,
multicue classiÞcation approaches seem to be a promising di-
rection for future research in the domain of object classiÞcation
to boost overall performance.

To gain further insight, we compute the correlation of classi-
Þer outputs (decision values) for the individual modality/feature
expert classiÞers, computed for pedestrian and nonpedestrian
samples individually and then averaged over the two classes, see
Table IV. The correlation analysis shows, that classiÞer outputs
are far less correlated across different modalities (Table IV-B)
than across different features (Table IV-A). Here, the less corre-
lated two modalities/features are, the larger the beneÞts obtained
in classiÞcation performance (see Figs. 5 and 6).

E. Classifier Fusion

In our Þnal experiments, we compare our multilevel Mix-
ture-of-Experts fusion approach to other techniques for clas-
siÞer fusion. First, we analyze fusion approaches involving a
combination of different classiÞers in other ways than our Mix-
ture-of-Experts framework. Second, we compare our approach
against a single classiÞer using a joint feature space which con-
sists of all features in all modalities -normalized and concate-
nated into a single feature vector [56]. Given our feature setup
as presented in Section V-B, the total dimensionality of the joint
feature space is 18 684. For comparison, the performance of the
Dalal and Triggs HOG/linSVM baseline [4] is also given. Re-
sults are shown in Fig. 8(a) for the multiclassiÞer fusion and in
Fig. 8(b) for the joint space fusion approaches.

The multiclassiÞer fusion approaches (entitled ÒUniform
SumÓ, ÒProductÓ and ÒSugeno Fuzzy IntegralÓ) involve in-
dividual classiÞers for each feature (HOG and LBP) and
modality (intensity, depth and motion). Altogether, there are
six classiÞers to be combined, using the sum and product of the
individual decision values [26], as well as a fuzzy integration
using Sugeno integrals [40]. Fuzzy integration involves treating
the individual classiÞer outputs as a fuzzy set and aggregating
them into a single value using the Sugeno integral. While
those approaches improve performance over the state-of-the-art
Dalal and Triggs HOG/linSVM classiÞer [4], our multilevel
Mixture-of-Experts classiÞer has a much better performance.
This clearly shows the beneÞt of gating on pose-level [see (4)]
and the learned classiÞer combination weights in (12).

In terms of joint space approaches, we train both a MLP
and a linSVM in the enlarged 18 684-dimensional joint feature
space (training a nonlinear SVM was not feasible given our
large dataset). While one could expect the MLP to improve
performance over the linSVM, due to the nonlinear decision
boundary, our results paint a different performance picture. The
MLP classiÞer is outperformed by the linSVM by a signiÞcant
margin. We attribute this to the so-called Òcurse of dimension-
ality,Ó e.g., [8], which relates the number of free parameters
in a classiÞer (as given by feature space dimensionality) to
the amount of available training samples. As a rule of thumb,
the number of training samples should be a factor-of-10 larger
than the number of free parameters to be estimated during


