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Abstract. The �rst part of this paper provides an overview of previous
work on tra�c sign recognition. Various components are discussed, such
as detection, classi�cation and temporal integration. The second part of
this paper covers a recently developed shape-based system, based on dis-
tance transforms. This system has been quite successful in detecting and
recognizing tra�c signs in real-time; we report single-image recognition
rates of above 90 % in preliminary experiments both o�ine as on-board
our demo vehicle.

1 Introduction

Vision-based systems on-board vehicles hold quite some promise in assisting
future drivers at their driving task; they might even allow autonomous navigation
under certain simpli�ed conditions (e.g. [7] [6]). The underlying aim would be
to increase tra�c safety and driving-comfort. An important capability of such
systems is to recognize tra�c signs; this may, for example, allow an on-board
system to warn the driver for inappropriate actions (e.g. speeding, taking a wrong
turn in an one-way street).

The outline of this paper is as follows. Section 2 provides an overview of past
work on tra�c sign recognition. Section 3 discusses a recently developed shape-
based system; it consists of a detection component based on distance transforms
(DTs) and a classi�cation component based on radial basis functions (RBFs).
We conclude in Section 4.

2 Overview of past work

One can distinguish three main components in work on tra�c sign recognition:
detection, classi�cation and temporal integration. Detection involves using color
or shape features to generate candidate regions where tra�c sign might reside in
a particular image. The resulting (normalized) pixel intensities are subsequently
analyzed in a classi�cation phase to determine whether they represent valid traf-
�c signs. The �nal step, temporal integration consists of increasing the reliability
of detection and/or classi�cation by considering image sequences; this requires
a tracking capability. We now discuss these components in turn.



2.1 Detection

Color-based detection methods [3] [10] [13] aim to segment the typical colors of
tra�c signs (i.e. red, blue and yellow) in order to provide a region of interest for
further processing. In some systems, the boundaries in color space are hardcoded
by the user [3], others use learning approaches [10] [11] For example, Janssen et

al. [10] use a pixel-based segmentation scheme where a look-up table is generated
o�ine by a polynom classi�er after a training phase. The training set involves
a large amount of manually labeled pixels obtained under a variety of lighting
conditions. After the classi�cation of individual pixels in various colors classes,
[10] [13] follow up with a region growing and �ltering step, in which candidate
regions for tra�c signs are selected based on their color, global shape features,
and topological relations (e.g. neighboring, enclosing).

Shape-based detection methods do not require color information. Blancard
[4] relies on edge segmentation and linking to obtain a contour representation,
from which various features are extracted (e.g. perimeter, curvature). Others
used template matching techniques, either using entire tra�c sign shapes as
templates [1] [8] [5] or only subparts [3] [15] (verifying consistency afterwards).
For correlation, images are preprocessed with high-pass band �lters.

Comparing color- and shape-cues one observes that color provides a very
immediate focussing mechanism for detecting tra�c signs. But whether color
information alone can provide an accurate boundary of the tra�c sign region is
doubtful. In practice, measured color values vary signi�cantly from their under-
lying "true" values, given di�erent lighting conditions, so that a useful partition-
ing of color space in regions corresponding to particular tra�c sign colors and
non-tra�c sign colors is problematic, irrespective of the color space (e.g. RGB,
HSV) used [10] [5]. Indeed, color regions such as those for "blue" and "red"
can overlap; additional problems arise with a color-only approach when consid-
ering tra�c signs which are inherently "white" (i.e. those clearing a particular
speed-limit). Furthermore, region growing methods that do not contain model
information tend to have unwanted "spill-over" e�ects.

Shape-based methods based on gradient features tend to be more robust with
respect to lighting conditions. One needs to distinguish though between methods
which place strong demands on edge segmentation (i.e. detection and linking)
and methods which are more model-driven (i.e. template matching), the latter
typically being more robust, at higher computational cost.

2.2 Classi�cation

The classi�cation step is usually preceeded by a normalization procedure on the
pixels of the candidate regions (i.e. the potential pictographs); typically, regions
are scaled to a �xed size and measures are taken to factor out lighting conditions.
The resulting intensity features are subsequently fed into one of the established
classi�er tools: nearest neighbour (NNB) [2], radial basis functions (RBF) [10],
polynom classi�ers (PC) [12] and neural networks (NN) [1] [3] [12]. or input to
self-designed schemes [5]. Work by Kressel et al. [12] uses a combined classi�er



approach, employing a feed-forward multi-layer NN with spatial receptive �elds
for dimensionality reduction; this has the advantage that relevant features can
be learned by the NN and the dimensionality reduction results in speed gains.
Furthermore, they compare the performance of a local approximator (RBF) with
that of a global approximator (PC) on large tra�c sign databases.

Not all work on tra�c sign recognition requires a separate detection step as
described in the previous section. Some work uses pictograph-based classi�ers
directly in conjunction with a search algorithm. For example, Betke and Makris
[2] use simulated annealing and Aoyagi and Asukara [1] use genetic algorithms.
Because little or no (error-prone) segmentation is required for these types of
approaches, they have the potential to be very robust. In practice however, they
tend to be quite slow and impractical for real-time applications. The problem
is that the classi�er outcome is typically not a well-behaved evaluation measure
to guide the search; its value can vary signi�cantly at small parameter changes
(e.g. position, scale), limiting the potential for e�cient coarse-to-�ne approaches.
Brute-force approaches based on optical correlators have been used, though, with
some success.

2.3 Temporal Integration

Simple tracking techniques involve few assumptions about the world and rely
solely on what is observed in the images (i.e. tracking in 2D) to estimate ob-
ject motion and establish correspondence. More sophisticated techniques model
camera geometry and vehicle speed to achieve better motion estimates. For ex-
ample, [5] considers a vehicle driving straight with constant velocity and uses a
Kalman-�lter framework to track the centers of detected tra�c signs. Once cor-
respondence is established over time, integration of recognition results is done by
simple averaging techniques where larger weights are given to recognition results
of tra�c signs closer to the camera.

3 A DT-based tra�c sign recognition system

Currently, our system consists of a detection (Section 3.1 and classi�cation (Sec-
tion 3.2) component.

3.1 Detection

The detection step uses a template-based correlation method to identify poten-
tial tra�c signs in images; this involves so-called distance transforms (DTs).
Matching with DT is illustrated schematically in Figure 1. It involves two bi-
nary images, a segmented template T and a segmented image I , which we'll call
"feature template" and "feature image". The "on" pixels denote the presence of
a feature and the "o�" pixels the absence of a feature in these binary images.
What the actual features are, does not matter for the matching method. Typ-
ically, one uses edge- and corner-points. The feature template is given o�-line



for a particular application (here it is a particular tra�c sign shape), and the
feature image is derived from the image of interest by feature extraction.
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Fig. 1. Matching using a DT

Matching T and I involves computing the distance transform of the feature
image I . The template T is transformed (e.g. translated, rotated and scaled) and
positioned over the resulting DT image of I ; the matching measure D(T; I) is
determined by the pixel values of the DT image which lie under the "on" pixels
of the transformed template. These pixel values form a distribution of distances
of the template features to the nearest features in the image. The lower these
distances are, the better the match between image and template at this location.
There are a number of matching measures that can be de�ned on the distance
distribution. One possibility is to use the average distance to the nearest feature.
This is the chamfer distance.

Dchamfer(T; I) �
1

jT j

X

t2T

dI(t) (1)

where jT j denotes the number of features in T and dI(t) denotes the distance
between feature t in T and the closest feature in I . Thus, the chamfer distance
consists of a correlation between T and the distance image of I , followed by
a division. Other more robust (and costly) measures reduce the e�ect of miss-
ing features (i.e. due to occlusion or segmentation errors) by using the average
truncated distance or the f -th quantile value (the Hausdor� distance) [9] [14].

In applications, a template is considered matched at locations where the
distance measure D(T; I) is below a user-supplied threshold �

D(T; I) < � (2)

Figure 2 illustrates the matching scheme of Figure 1 for the typical case of
edge features. Figure 2a-b shows an example image and template. Figure 2c-d



shows the edge detection and DT transformation of the edge image. The dis-
tances in the DT image are intensity-coded; lighter colors denote larger distance
values.

The advantage of matching a template (Figure 2b) with the DT image (Figure
2d) rather than with the edge image (Figure 2c) is that the resulting similarity
measure will be smoother as a function of the template transformation param-
eters. This enables the use of various e�cient search algorithms to lock onto
the correct solution. It also allows more variability between a template and an
object of interest in the image.

For an overview of previous work on DT-based matching, see [8]. The pro-
posed system extends basic DT-based matching in two ways. First, edge features
are di�erentiated by their orientation. Separate DTs are computed for each orien-
tation interval of a scene edge image. The edge templates are separated into sub-
parts with similar edge orientation. Matching proceeds as before, but now the
match measure between image and template is the sum of the match measures
between template and DT image corresponding to the same edge orientation in-
terval. Incorporating orientation information greatly reduces false-positives and
speeds up the hierarchical detection process discussed next.

The second extension involves matching multiple (N) templates using a tem-
plate hierarchy, in addition to employing a coarse-to-�ne search in parameter
space. The idea is that at a coarse level of search, when the image grid size of the
search is large, it would be ine�cient to match each of the N objects separately,
if they are relatively similar to each other. Instead, one would group similar tem-
plates together and represent them by a prototype template; matching would be
done with this prototype, rather than with the individual templates, resulting
in a (potentially signi�cant) speed-up. This grouping of templates is done at
various levels, resulting in a hierarchy, where at the leaf levels there are the N
templates one needs to match with, and on intermediate levels there are the
prototypes. See Figure 3 for the tra�c sign hierarchy used for the experiments.
Matching can then be considered as a tree traversal process. When a particular
node is reached during the traversal process, the corresponding template needs
to be matched against the DT image at some particular image locations. For
the locations where the match is below the node-speci�c distance threshold, the
matching propagates to the children of the node, or ends successfully at the leaf
level. For details, see [8].

3.2 Classi�cation

After the detection step, regions corresponding to the interior of the contour
templates are extracted from the images at the detected locations; these are the
candidate tra�c signs. A normalization step follows in which the pixel intensi-
ties are normalized w.r.t. mean and variance. Furthermore, cropped regions are
scaled to a �xed square NxN size, �lling non-data pixels with null values.

A radial basis function (RBF) network is used for classi�cation [12]. During
the training stage, reference vectors are set in feature space by an agglomerative
clustering procedure. Linear ramps, rather than Gaussians, are used as radial



functions, for e�ciency purposes. Two radius parameters need to be speci�ed for
each such ramp; these parameters are set based on the distance to the nearest
reference vector of the same class and to that of the nearest reference vector of
one of the other classes, in a manner described in [12]. The test stage consists of
summing probabilities that an unknown feature vector corresponds to a partic-
ular class, based on the contributions made by the various reference vectors.

3.3 Experiments

The aim was to recognize circular and triangular (up/down) tra�c signs, as seen
on highways and secondary roads. For starters, we built classi�ers for a subset
of tra�c signs: 5 classes dealt with speed limitations (circular) and 5 dealt with
various warning signs (triangular).

For detection, we used shape-templates with radii 7-18 pixels (the images
were of size 360 by 288 pixels). This lead to a total of 36 templates, for which a
template tree was speci�ed \manually" as in Figure 3. Coarse-to-�ne matching
used a grid size of � = 8; 4; 1 for the three levels of the template tree. For
classi�cation, we scaled image regions down to 16 x 16 pixels. The number of
reference vectors used varied between 50 and 250, depending on the class.

The experiments involved both o�- and online tests. O�-line, we used a
database of 1000 images, taken during day-time (sunny, rainy) and night-time.
See Figure 4. We obtained single-image detection rates of over 95%, when al-
lowing solutions to deviate by 2 pixels and by radius 1 from the values obtained
by a human. On the average, there were two or less false positives per image at
the detection stage. Preliminary single-image recognition rates are above 90%,
with less than 5% false positives. Although promising, due to small size of the
examined test set, these �gures must be considered with some caution. Di�cult
environmental conditions (e.g. rain drops, partial occlusion by window wiper, di-
rect sunlight into camera) could furthermore reduce detection rates by as much
as 15%.

On-board experiments were performed with our E-class T-model vehicle (see
Figure 5). The system ran at about 6-8 Hz on a 266 Mhz dual-Pentium II with
MMX.

4 Conclusions

An overview was provided of existing work on tra�c sign recognition; discussed
were detection, classi�cation and temporal integration components. A recently
developed tra�c sign recognition was subsequently introduced where an e�-
cient hierarchical method is used for shape-based detection; it uses a simulta-
neous coarse-to-�ne approach in parameter and shape space e�ectively enabling
real-time implementation on a general-purpose processor. Subsequent classi�-
cation was performed by a RBF network. Work in progress involves validating
the promising initial results in ROC experiments, using a signi�cantly larger
database (10000) and furthrt improving them by temporal integration.
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Fig. 2. (a) original image (b) template (c) edge image (d) DT image
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Fig. 3. A hierarchy for tra�c sign shapes (hard-coded)

Fig. 4. Tra�c sign recognition



Fig. 5. on-board camera and display


