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Abstract. In the context of intelligent vehicles, we perform a com-
parative study on recursive Bayesian filters for pedestrian path pre-
diction at short time horizons (< 2s). We consider Extended Kalman
Filters (EKF) based on single dynamical models and Interacting Multi-
ple Models (IMM) combining several such basic models (constant veloc-
ity/acceleration/turn). These are applied to four typical pedestrian mo-
tion types (crossing, stopping, bending in, starting). Position measure-
ments are provided by an external state-of-the-art stereo vision-based
pedestrian detector. We investigate the accuracy of position estimation
and path prediction, and the benefit of the IMMs vs. the simpler single
dynamical models. Special care is given to the proper sensor modeling
and parameter optimization. The dataset and evaluation framework are
made public to facilitate benchmarking.

1 Introduction

Pedestrian path prediction is an important problem in several application con-
texts, such as architecture, social robotics and intelligent vehicles. Here we con-
sider the intelligent vehicle context, in view of driver assistance and active pedes-
trian safety. Strong gains have been made over the years in improving computer
vision-based pedestrian recognition performance. This has culminated in first
active pedestrian safety systems reaching the market. For example, Mercedes-
Benz introduces in its 2013 E- and S-Class models a novel stereo-vision based
pedestrian system, which incorporates automatic full emergency braking.

A sophisticated situation assessment requires a precise estimation of the cur-
rent and future position of the pedestrian with respect to the moving vehicle. A
deviation of, say, 30 cm in the estimated lateral position of the pedestrian can
make all the difference, as this might place the pedestrian just inside or outside
the driving corridor. Current active pedestrian systems are typically designed
conservatively in their warning and control strategy, emphasizing the current
state rather than prediction, in order to avoid false system activations. Indeed,
pedestrian path prediction is a challenging problem, due to the highly dynamic
behavior of pedestrians. They can change their walking direction in an instance,
or start/stop walking abruptly. As a consequence, sensible prediction horizons
are typical short (we consider < 2s in this paper).
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Fig. 1: Four typical pedestrian motion types: bending in (top left), stopping (top right),
crossing (bottom left) and starting (bottom right) with detection bounding boxes.

There has been surprisingly little analysis in previous work of the accuracy of
pedestrian state estimation, let alone, that of prediction, in vehicle context. This
paper addresses this by providing a quantitative comparative study of recursive
Bayesian filters: we consider Extended Kalman Filters (EKF) based on single
dynamical models and Interacting Multiple Models (IMM) combining several
such basic models (constant velocity/acceleration/turn). These are applied to
four typical pedestrian motion types (crossing, stopping, bending in, starting),
see Fig. 1. Position measurements are provided by an external state-of-the-art
stereo vision-based pedestrian detector. The rationale for focusing on recursive
Bayesian filters in connection with modeling pedestrians as point targets is their
relatively good performance and low computational cost (especially important in
a vehicle context). We investigate the accuracy of position estimation and path
prediction, and the benefit of the IMMs vs. the simpler single dynamical models.
Special care is given to the proper sensor modeling and parameter optimization.

2 Previous Work

In this section, we focus on pedestrian state estimation based on parametric,
recursive Bayesian filters. For an overview of vision-based pedestrian detection
and tracking in more general context, see recent surveys (e.g. [7, 8]).

A popular choice for target state estimation is the Kalman Filter (KF). Its
applicability in real-time systems has been proven over many years for different
sensors and application domains [1, 3, 4, 18, 21]. State parameters (e.g. position,
velocity, acceleration) of the tracked target can be estimated with appropriate
dynamical and measurement models. The KF can further be used for prediction
by propagating the current state with the dynamical model without the inclu-
sion of new measurements. Work by [3] on FIR-based pedestrian tracking uses
a constant acceleration (CA) model in image space. Working in image space,
however, makes it difficult to incorporate prior knowledge on the dynamics of
pedestrian motion. Therefore, [2] track pedestrians on the ground plane using
a KF in an indoor, static stereo camera setup. The use of a linear KF in the
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context of video-based pedestrian tracking in the world implies the use of 3D
pseudo-measurements (i.e. back projection of 2D measurements); this does not
account for the dependency of the longitudinal component of the noise on depth.

More accurate measurement models for the perspective projection of video
sensors can be incorporated by means of non-linear Extended (EKF) or Un-
scented (UKF) Kalman filters. [15] use a UKF in a mono camera setup to track
pedestrians on the ground plane (CV model). [19] apply the UKF to measure-
ments from a stereo camera system comparing three different dynamical models
(two CV and one constant position (CP) model) where two models have a state
space in world coordinates and one in image coordinates.

KF-based approaches have also been used for pedestrian state estimation
outside the video-only domain. [9] apply a CV model in a multi-sensor setup with
an IR camera and laser scanner. In a previous paper [18], they used two different
motion models (CA and CTRV), mentioning advantages of the latter model at
near-zero pedestrian speeds. Work by [21] considers a setting where pedestrians
wear electronic tags. It uses a KF with a turn motion model including orientation
and velocity in polar coordinates (CTRV).

Maneuvering targets can be elegantly accounted for mathematically by means
of the Interacting Multiple Model (IMM) framework [4, 13]. [11] use an IMM
(CP/CV) for analyzing walking vs. stopping pedestrian motion types from a
stereo vision sensor on-board a vehicle. [5] use an IMM combining eight CV
models with fixed velocities in eight directions. It further contains an online
adaption algorithm for the IMM transition probability matrix.

Within the class of non-parametric methods for pedestrian path predic-
tion and action classification, [11] proposes a probabilistic trajectory matching
method to estimate whether a pedestrian walking towards the curbside intends
to cross or not, when viewed from a stereo vision system on-board a vehicle. [12]
considers the complementary case of whether a pedestrian standing will start to
walk using a SVM-based classification approach, albeit from a static monocular
camera.

Quantitative evaluations of pedestrian state (position) estimation have been
few and limited. [3, 5, 9, 15, 18, 21] do not include any such evaluation. [2] provides
accuracy figures only related to its KF approach in indoor setting. [19] uses
simulated data to compare CV and CP KFs. Our paper contribution is a broad
quantitative study on pedestrian position estimation and path prediction using
parametric Bayesian recursive filters in vehicle context. Compared to [11], we
consider a wider range of pedestrian motion types. Whereas the IMM used by
[11] uses 3D pseudo measurements and KFs, we use a more accurate stereo sensor
modeling by EKFs.

3 Recursive Bayesian Filtering

3.1 Kalman Filter

The discrete-time KF estimates a state x(t) at time step t from measurement
z(t) and previous state x(t− 1) with the dynamical model
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x(t) = Ax(t− 1) +Bu(t− 1) + ω(t− 1) (1)

where the relation between measurement and state is given by

z(t) = Hx(t) + ν(t). (2)

A and B are transition matrices for the state x and the control input u, re-
spectively, ω(t− 1) and ν(t) are white, zero-mean, uncorrelated noise processes
with covariances ω(t) ∼ (0, Q(t)) and ν(t) ∼ (0, R(t)). The filter process can be
described as cycle of the two steps prediction (predicting the state x(t − 1) to
the next time step) and correction (updating the predicted state x̂(t) with the
current measurement) [20].

3.2 Interacting Multiple Model Kalman Filter

There are several KF extensions available to cover different motion types and
maneuvers (see [13] for an overview), the most common is the Interacting Mul-
tiple Model KF (IMM). The IMM models that there is a probability of pij that
the tracking target makes a transition from one type of motion (i) to another
(j); these values are captured by the transition probability matrix (TPM). Each
iteration of the IMM consists of the three steps: interaction, filtering and model
probability update [4]. In the interaction step, the mixing probability µij(t− 1)
(cond. probability that the target changed its type of motion) is calculated based
on model probabilities and the TPM to produce mixed state estimates x̂0

j (t− 1)

and covariances P̂ 0
j (t−1) for all models j. The mixed states are used as input in

the filtering step where each model is predicted and updated with the standard
KF equations. In the last step, the model probabilities are updated based on the
measurement likelihood.

3.3 Measurement Model

Measurements come from a pedestrian detector applied on sequences recorded
with a stereo camera system. A measurement vector (dropping time index t
in the following) z = (u, d) is derived from the footpoint pf = (u, v) and the
median disparity d of a pedestrian bounding box. The relation of a point in the
image pi = (u, v) and its disparity d to a point pc = (xc, yc, zc) in the camera
coordinate system is given by the perspective camera model [1]:uv

d

 =

h1(pc)
h2(pc)
h3(pc)

 =

 u0 + fuxc

zc

v0 + −fvyc
zc

fub
zc

 (3)

where fu = f
su

and fv = f
sv

with focal length f , baseline b, horizontal and vertical
pixel width su and sv, respectively. Eq. (3) leads to the nonlinear measurement
function h. For a position pgc = (xc, zc) on the groundplane h2 can be ignored.
To predict a measurement at time step t, the predicted state vector x̂ (camera
coordinates) has to be projected into the measurement (image) space with ẑ =
h(x̂). For the EKF we further need to calculate the Jacobian H = ∂h

∂x .
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Table 1: Mean sojourn times of different target dynamics in the training set (diagonals
Pi,i of the TPM based on a cycle time of T ≈ 60ms). “Straight Walking” consists of
the straight walking segments of starting, stopping and bending in sequences as well as
complete crossing sequences. “Maneuver” relates to all other segments. “Turning”, a
subset of “Maneuver”, relates to the turning segments within the bending in sequences.

Motion type mean sojourn time τi (s) Pii(T ) = 1− T/τi
Straight Walking 6.66 0.99

Maneuver 1.67 0.96

Turning 2.50 0.98

3.4 Dynamical Models

Several discretized continuous-time dynamical models are considered in this
study: the popular constant velocity (white noise acceleration) model (CV), the
constant acceleration (Wiener process acceleration) model (CA) and the con-
stant turn model (CT) with Cartesian state vector. These characterized by their
state vectors x, transition matrices A and process noise matrices Q. The CV
model state vector holds position and velocity (x = [x, z, vx, vz]), the CA model
further has acceleration (x = [x, z, vx, vz, ax, az]) and the CT model turn rate
(x = [x, z, vx, vz, ω]) variables. For details, such as transition and process noise
matrices, see [4, 14].

Several approaches can be taken to specify the TPM. There is the ad-hoc
approach to fill the diagonals with values close to one. [4, 13] discuss the use of the
mean sojourn time (the mean time a target stays in a motion type) for the TPM.
Lastly, one could perform parameter optimization of the entries of the TPM
directly. In preliminary experiments, we obtained similar best performance with
the second and third approaches, thus we selected the sojourn time approach to
specify the TPM, derived from a training set, see Section 4 and Table 1.

3.5 Ego Motion Compensation

At each time step, the filter state is projected from the previous camera coor-
dinate system to the current one using the inertial motion matrix Mv (vehicle
coordinates) based on velocity and yaw rate measured by on-board sensors. The
inverse ego motion homography matrix is given by Mc = D−1MvD (where D de-
fines the relation between camera and vehicle coordinate system). Translational
ego compensation is done using tMc

as control vector u (Eq. (1) with B = I2x2),
the ego rotation is integrated into the transition matrix Ae (exemplary for the
CV model) [16]:

Ae =

[
RMc 02x2
02x2 RMc

]
A (4)



6 N. Schneider and D. M. Gavrila

Table 2: Sequences in our dataset recorded with standing and moving vehicle.

Sequences veh. stand. veh. mov. total

Bending in 5 18 23

Stopping 5 13 18

Starting 0 9 9

Crossing 3 15 18

Fig. 2: Pedestrian distance distribution over entire dataset.

4 Experiments1

Dataset. Image sequences were recorded with a stereo camera system (baseline
22 cm, 16 fps, 1176 × 640 pixels) mounted behind the windshield of a vehicle.
They contain four typical pedestrian motion types: (walking laterally towards
the street and) crossing, (walking laterally towards the street and) stopping,
(standing at the curbside and) starting (to walk laterally) and (walking alongside
the street,) bending in (and crossing). See Fig. 1. The dataset consists of 68
sequences of which 12485 images contain (single) pedestrians. 55 sequences were
recorded at vehicle speeds of 20−30 km/h, the others involved a standing vehicle.
See Table 2 and Figs. 2 and 6 (bottom left) for further data statistics. The
dataset is splitted evenly in a training and test set. The latter was splitted 5-folds
for evaluation in Fig.6 (bottom right); parameter optimization was quite time
consuming, so we preferred not vary the training set as part of cross-validation.

Ground Truth (GT) is obtained by manual labeling of pedestrian bound-
ing boxes and computating the median disparity over the rough upper pedes-
trian body area. The position of the pedestrian in the vehicle coordinate system
is calculated with Eq. (3) and the camera-to-vehicle homography matrix. The
transformed positions are fitted with a curvilinear model. The GT locations are
obtained by longitudinal projections on the fitted curve. Sequences are further
labeled with event tags and time-to-event (TTE in frames) values. For stopping

1 The dataset and evaluation framework are made public for non-commercial research
purposes. Follow the links from http://isla.science.uva.nl/ or contact the 2nd author.
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Fig. 3: Measurement error distribution: (left) lateral, u (right) longitudinal, d.

Table 3: Optimized process noise parameters (σv, σa, {σv, σω}) for the different filters.

Filter EKF CV EKF CA EKF CT IMM(CV,CA) IMM(CV,CT∗)

Process noise 0.77 0.44 {0.95, 0.90} (0.70, 0.80) (0.75, {0.40, 0.90})

pedestrians the last placement of the foot on the ground at the curbside is la-
beled as TTE = 0. For crossing pedestrians, the closest point to the curbside
(before entering the roadway), for pedestrians bending in and starting to walk
the first moment of visually recognizable body turning or leg movements are
labeled with TTE = 0. All frames previous to an event have TTE values > 0,
therefore all frames following the event have TTE values < 0.

A state-of-the-art HOG/linSVM pedestrian detector [6] provides measure-
ments, given region-of-interests supplied by an obstacle detection component
using dense stereo data [10]. The resulting bounding boxes are used to calculate
a median disparity over the upper pedestrian body area based on the disparity
maps. The measurement vector z = (u, d) is derived using the central lateral
position of the bounding box and this median disparity value.

Evaluation Setup. Sequences have an average of 121 measurements (min.
39, max. 274), they start with a minimum of three consecutive measurements,
and contain no missing detections longer than five consecutive frames. Evaluation
is done with respect to the lateral localization error in TTE interval [10,−50],
corresponding to an evaluation interval from 0.60 s before to 3.0 s after the event.
At each time step, predictions of up to 32 frames (1.9 s) are made ahead. We
use the predict and update functions of the EKF/UKF MATLAB toolbox [17].

Parameter Setting. The measurement noise ν (see Eq. (2)) has been de-
rived statistically on the training set, in terms of lateral bounding box error σu
and disparity error σd of the pedestrian detections w.r.t. the GT. See Fig. 3.
The measurement noise matrix R = diag(σ2

u, σ
2
d) is thus set to σu = 6.15 and

σd = 0.32.

Process noise ω is determined by Q(t) = Q0(t)q, where q ∈ {σ2
v , σ2

a} and

for the CT model, Q5,5(t) =
σ2
ωQ

0
5,5(t)

q [4]. It has been optimized for each filter
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Fig. 4: Position error at current time (t = 0) averaged over all sequences: lateral and
longitudinal combined (left) and only lateral (right).

Fig. 5: Mean lateral position error when predicting 32 frames (t = 1.9 s) ahead.

in terms of positions mean-squared-error (MSE) including all N position state
estimates xi(t = 0) (i = 1, ..., N) and the corresponding P predictions xi(t =
1, ..., P ) (P = 32) with the objective function:

arg min√
q

1

N

N∑
i=1

(
P∑
t=0

MSE(xi(t))

P + 1

)
(5)

using a discrete parameter search on the training set. The outcome is shown
in Table 3. Search space has been discretized using 60 steps for single models
with one noise parameter (CV, CA) and 18 steps each for models with two noise
parameters (CT, 324 parameter combinations). In a coarse-to-fine fashion dis-
cretization for the IMM(CV,CA) could be reduced based on single model results
to 9 steps (81 parameter combinations). Including the TPM with a discretization
of 12 values per diagonal in the optimization results in 11664 parameter com-
binations. Furthermore, the CT model has been optimized using only segments
of bending in sequences around the labeled turn event (TTE ∈ [10 −50]). The
resulting “turn expert” filter will be termed CT∗ in the remainder.
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Fig. 6: Bending in: Bird’s eye view of an example trajectory showing predictions (32
steps ahead) for various filters (top row, far view and close up, left and right). Turn
radius distribution over the bending in sequences (bottom left). Distribution of the pre-
diction error improvement by IMM(CV,CT∗) vs. EKF(CV), based on cross-validation.

Results. Fig. 4 shows the position error at current time (t = 0), averaged
over all sequences. One observes a similar performance for all filters. Performance
differences become more evident when predicting 32 frames (1.9 s) ahead, see Fig.
5 (the CA model was removed from the plots since its predictions were far off,
i.e. velocities accumulate over the prediction horizon to implausible values). In
terms of the single motion models (CV vs. CT), one observes benefits for the CV
on the crossing sequences, and benefits for the CT on the others. For example,
CT predictions during the turning of the bending in sequence are more accurate
by up to 36 cm, compared to CV. The IMM(CV,CT∗) combines the best of both
worlds, it shows an improvement of up to 30 cm vs. CV. One further observes
that IMM(CV,CA) does not outperform CV and lags IMM(CV,CT∗), overall. A
more detailed analysis of the bending in case is given in Fig. 6.

5 Conclusions

In this paper, we studied several single dynamical models (CV, CA, CT) and
IMMs combining such basic models for pedestrian position estimation and path
prediction, in vehicle context. Results show no significant performance gain of
the more sophisticated IMMs considered vs. the simpler CV, for current position
estimation. We attribute this to the high sampling rate and the low measurement
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error for this application. For path prediction (1.9 s ahead), an IMM(CV,CT∗)
involving a constant velocity and a “turn expert” model, is shown to provide an
improvement in the lateral position estimation of up to 30 cm during maneuvers.
Future work involves extending the database, both in terms of motion types
considered and in terms of their sample count.
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