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Fig. 10. Precision versus recall curves of various detectors shown for the new pedestrian and cyclist test dataset with different settings. The AP is listed before the
name of each method. “Ignore” indicates ignoring cyclist (pedestrian) instances when evaluating the performance of pedestrian (cyclist) detection, and “Discard”
indicates discarding cyclist (pedestrian) instances directly, which are plotted in solid and dashed lines, respectively. UB-MPR-FRCN-PP and UB-MPR-FRCN are
shorted for UB-MPR-PP and UB-MPR, respectively. (a) Pedestrian, easy. (b) Cyclist, easy, (c) Pedestrian, moderate. (d) Cyclist, moderate. (e) Pedestrian, hard.
(f) Cyclist, hard.

divided the positive cyclist instances into three classes to train
three cyclist detectors, just like we did in [8]. Meanwhile,
another detector for pedestrian detection was also trained in the
same way. The same parameters used in the original application
[23] were utilized to train the pedestrian and cyclist detector.

During the test phase, all the detectors mentioned above
deployed a greedy fashion of non-maximum suppression to
suppress bounding boxes with lower scores, just like the meth-
ods used in ACF [23].

C. Comparisons With Other Proposal Methods

In order to validate the performance of the presented proposal
method, we compute the recall rate of different proposals at
different IoU ratios with ground-truth bounding boxes, shown
in Fig. 9. SS and EB methods are utilized with default param-
eters. The N proposals are the top-N ranked ones based on their
confidences. We consider different numbers (2000 and 4000)

for SS and EB.
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TABLE II
PEDESTRIAN DETECTION AVERAGE PRECISION IN THE TEST DATASET

TABLE III
CYCLIST DETECTION AVERAGE PRECISION IN THE TEST DATASET

The results show that the UB-MPR proposal method outper-
forms the other compared methods significantly, even with less
proposed bounding boxes. Take the moderate subset as an ex-
ample, when IoU overlap is 0.5, our UB-MPR method achieves
96.5% recall rate, which outperforms SS and EB (with average
2000 proposals per image) by 41.1% and 33.2%, respectively.
Even when SS and EB use 4000 proposals, the UB-MPR
method outperforms them by 30.5% and 20.2%, respectively.
When IoU overlap is 0.75, the UB-MPR method achieves
84.8% recall rate, which outperforms SS (2000), EB (2000),
SS (4000), and EB (4000) by 66.6%, 52.2%, 61.3%, and 43.3%,
respectively.

Besides, we also found two trends from the comparative
figures: with the test subsets becoming harder, the advantage
of the UB-MPR method is increasingly obvious; when the IoU
overlap is less than 0.9, the higher the IoU overlap is, the more
obvious improvement of our method compared to the other
methods.

D. Comparisons With Other Detectors

In this section, we compare the performance of our proposed
method to other representative methods using the experimental
protocol explained above. Fig. 10 illustrates the overall de-
tection performance of all the detectors in the new pedestrian
and cyclist test dataset with different settings. In order to com-
pare different detectors directly, we also provide two summary
tables in Tables II and III. From the figure and two summary
tables, we can find that all the selected methods can get rea-
sonable performances in different subsets. Among them, the
proposed methods (UB-MPR-FRCN-PP and UB-MPR-FRCN)
outperform the others under any conditions, which illustrates
the effectiveness of our unified framework for pedestrian and
cyclist detection.

When compared to other FRCN-based methods in the
moderate subsets, UB-MPR-FRCN based pedestrian detector
outperforms SS-FRCN and EB-FRCN by 13.9% and 10.3% AP,
respectively, meanwhile UB-MPR-FRCN based cyclist detector

outperforms SS-FRCN and EB-FRCN by 13.3% and 10.9% AP,
respectively. The improvement of the performance is brought
by the UB-MPR proposal method, which demonstrates the
benefit of the new proposal method.

We also find LDCF and ACF based pedestrian detectors
and cyclist detectors can get competitive results when ignor-
ing cyclist and pedestrian instances, respectively. But with
“discard” settings (discarding cyclists when evaluating pedes-
trian detectors, or discarding pedestrians when evaluat-
ing cyclist detectors), their performances drop significantly.
Meanwhile, the performance of FRCN-based methods do not
change a lot. This is because LDCF and ACF based detec-
tors train pedestrian and cyclist detectors separately, thus they
cannot differentiate them clearly. Therefore, from this point,
FRCN-based framework for pedestrian and cyclist detection
has obvious advantages.

When the specific post-processing (PP) for UB-MPR-FRCN
method is deployed, the performance in almost all subsets can
be slightly improved, which shows the post-processing step
described in Section V-D can further enhance the detection
performance.

E. Discussion

The above experimental results show that our proposed
method UB-MPR-FRCN-PP outperforms other state-of-the-art
detectors significantly. Some qualitative detection results of
the proposed method under different scenarios from the new
pedestrian and cyclist dataset can be found in Fig. 11. However,
several important issues about the experiments need to be
discussed and explained.

It is noted that the performance of all pedestrian detectors are
not as good as cyclist detectors. This is because the unbalanced
training samples are applied during the training procedure. Al-
though plenty of pedestrian instances have been supplemented
into the training set 3, quite a number of them are over occluded
or too small, which are ignored during training.

We also find that, with the test subset setting becoming
harder, average precisions of all detectors decrease gradually,
because many pedestrian and cyclist instances are with lower
resolution and under partial occlusion. Thus, there is still a big
room to improve in the moderate and hard subsets, more work
needs to be followed up in the new dataset.

We only evaluate the proposed detector in our new pedestrian
and cyclist dataset, because no relevant pedestrian and cyclist
dataset is available for training and evaluating the detector. The
KITTI object detection dataset [20] is considered as a difficult
dataset including annotated cars, pedestrians and cyclists. But
very limited pedestrian and cyclist instances are involved in this
dataset. Moreover the rider of cyclist instances is not annotated.
Thus the proposed method cannot be validated in this dataset.

In this paper, we focuses on detection performance rather
than processing speed. Our proposed method, running on a
3.3-GHz i7 Central Processing Unit (CPU) processor and a
TITIAN X Graphics Processing Unit (GPU) processor, needs
about 1.9s per image (2048 × 1024), which is almost equal to
EB-FRCN (∼1.8 s), but more efficient than SS-FRCN (∼23 s).
However, with the development of computer hardware and
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Fig. 11. Detection examples of our detector under different scenarios from the pedestrian and cyclist dataset. Blue and green bounding boxes indicate detected
pedestrians and cyclists, respectively.

GPU optimization, processing speed in object detection has
seen great progress recently, and the complex models like
convolutional neural networks will be released real-time.

VI. CONCLUSION AND FUTURE WORK

In this paper, a unified framework for concurrent pedes-
trian and cyclist detection is presented, which consists of an
UB-MPR based detection proposal method, a FRCN-based
model for classification and localization, and a specific post-
processing step. The proposed method can detect pedestrians
and cyclists concurrently and differentiate them clearly, both of
which are needed for the decision of intelligent vehicles.

Experimental results demonstrate that our UB-MPR proposal
method outperforms the other compared methods significantly,
even with less proposed bounding boxes. And our proposed
method UB-MPR-FRCN-PP outperforms the others almost un-
der any conditions. The proposed method achieves more than
10% AP improvements in the moderate subset compared to
FRCN-based methods, due to the use of UB-MPR proposal.

It also outperforms ACF and LDCF based detectors, especially
when using the “Discard” setting, which demonstrates the
benefit of the discriminative networks.

In order to make walking and cycling safer, the temporal and
orientation information [37] of pedestrians and cyclists could
help to improve risk assessment. Therefore, we are planning
to extend our work to explore multiple object tracking and
orientation estimation for pedestrians and cyclists.
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